As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Triangular norm-based intuitionistic fuzzy propositional calculus

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/7/2/44-54
Title of paper: Triangular norm-based intuitionistic fuzzy propositional calculus
Author(s):
Krassimir Atanassov
CLBME - Bulgarian Academy of Sciences, P.O. Box 12, Sofia-1113, Bulgaria
krat@bgcict.acad.bg    (current: krat@bas.bg)
Adrian Ban
Department of Mathematics, University of Oradea, Armatei Romane 5, 3700 Oradea, Romania
aiban@math.uoradea.ro    (current: aiban@uoradea.ro)
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 7 (2001), Number 2, pages 44—54
Download:  PDF (8404  Kb, File info)
Abstract: The intuitionistic fuzzy logic operations "conjunction", "disjunction" and "implication" are defined with the help of triangular norms and conorms then their properties are discussed. Many results obtained in other papers are consequences of these properties.


References:
  1. Atanassov, K.T., Two variants of intuitionistic fuzzy propositional calculus, Preprint IM-MFAIS-5-88, Sofia, 1988.
  2. Atanassov, K.T., Some operators of a modal type in intuitionistic fuzzy modal logic, Comptes rendus de l’Academie bulgare des Sciences, Tome 47, 12(1994), 5-8.
  3. Atanassov, K.T., Remark on intuitionistic fuzzy logic and intuitionistic logic, Mathware & Soft Computing, 2(1995), 151-156.
  4. Atanassov, K.T., The Hauber’s law is an intuitionistic fuzzy tautology, Notes on Intuitionistic Fuzzy Sets, 3(1997), 82-84.
  5. Atanassov, K.T., Gargov, G., Elements of intuitionistic fuzzy logic. Part I, Fuzzy Sets and Systems, 95(1998), 39-52.
  6. Atanassov, K.T., Intuitionistic Fuzzy Sets-Theory and Applications, Springer-Physica Verlag, Berlin, 1999.
  7. Atanassov, K.T. Remarks on the conjunctions, disjunctions and implications of the intuitionistic fuzzy logic Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems Vol. 9, 2001, No. 1, 55-65.
  8. Atanassov, K.T., Nikolov, N.G., Aladjov, H.T. Remark on two operations over intuitionistic fuzzy sets. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems Vol. 9, 2001, No. 1, 71-75.
  9. Butnariu, D., Klement, E.P., Triangular norm-based measures and their Markov kernel representation, J. Math. Anal. Appl. 162(1991), 111-143.
  10. Butnariu, D., Klement, E.P., Zafrany, S., On triangular norm-based fuzzy logics, Fuzzy Sets and Systems, 69(1995), 241-255.
  11. Klement, E.P., Mesiar, R., Triangular norms, Tatra Mountains Math. Publ., 13(1997), 169-193.
  12. Klement, E.P., Navara, M., A survey on different triangular norm-based fuzzy logics, Fuzzy Sets and Systems, 101(1999), 241-251.
  13. Mashinchi, M., On convexity of fuzzy sets, The Journal of Fuzzy Mathematics, 2(1994), 655-669.
  14. Rasiova, H., Sikorski, R., The mathematics of metamathematics, Polish Academy of Sciences, Warszawa, 1963.
  15. Reghis, M., Roventa, E., Classical and fuzzy concepts in mathematical logic and applications, CRC Press, Boca Raton, New York, 1998.
  16. Schweizer, B., Sklar, A., Probabilistic Metric Spaces, North-Holland, New York, 1983.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.