As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Some new fixed point theorems in generalized intuitionistic fuzzy metric spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/25/3/42-52
Title of paper: Some new fixed point theorems in generalized intuitionistic fuzzy metric spaces
Author(s):
M. Rajeswari
Mathematics Department, M.G.R College, 635130, Hosur, India
rajimaths1980@gmail.com
M. Jeyaraman
Mathematics Department, Raja Doraisingam Govt. Arts College, 630561, Sivaganga, India
jeya.math@gmail.com
S. Durga
Mathematics Department, Raja Doraisingam Govt. Arts College, 630561, Sivaganga, India
durgasundaram96@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 25 (2019), Number 3, pages 42–52
DOI: 10.7546/nifs.2019.25.3.42-52
Download:  PDF (179  Kb, File info)
Abstract: The aim of this paper is to give some new fixed point theorems for contractive type mappings in generalized intuitionistic fuzzy metric spaces. The results presented improve some well known results in the literature.
Keywords: Complete, Compact, Fuzzy metric space, Intuitionistic fuzzy metric space.
AMS Classification: 54H25, 47H10, 47S40.
References:
  1. Atanassov, K. (1983). Intuitionistic fuzzy sets, VII ITKR’s session, Sofia, June 1983 (Deposed in central Science-Technical Library of Bulg. Academy of Science, 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6 (in English).
  2. Banach, S. (1932). Theorie des Operations Lineaires, Warsaw: Monografj Mathematyczne.
  3. Edelstein, M. (1962). On fixed and periodic points under contractive mapping. J London Math Soc., 37, 74–79.
  4. George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 395–399.
  5. Gregori, V., & Sapena, A. (2002). On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125, 245–252.
  6. Kramosil, I., & Michalek, J. (1975). Fuzzy metric and statistical metric spaces, Kybernotice, 11, 326–334.
  7. Park, J. H. (2004). Intuitionistic fuzzy metric spaces, Chaos, Solitons Fractals, 22, 1039–1046.
  8. Sedghi, S., & Shobe, N. (2006). Fixed point theorem inM-fuzzy metric spaces with property (E), Advances in Fuzzy Mathematics, 1(1), 55–65.
  9. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.