As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Radical structures of intuitionistic fuzzy polynomial ideals of a ring

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/24/4/85-96
Title of paper: Radical structures of intuitionistic fuzzy polynomial ideals of a ring
Author(s):
P. K. Sharma
Post Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Gagandeep Kaur
Research Scholar, IKG PT University, Jalandhar, Punjab, India
taktogagan@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 24 (2018), Number 4, pages 85–96
DOI: https://doi.org/10.7546/nifs.2018.24.4.85-96
Download:  PDF (198 Kb  Kb, File info)
Abstract: In this paper we investigate the radical structure of an intuitionistic fuzzy polynomial ideal [math]\displaystyle{ A_x }[/math] induced by an intuitionistic fuzzy ideal [math]\displaystyle{ A }[/math] of a ring and study its properties. Given an intuitionistic fuzzy ideal [math]\displaystyle{ B }[/math] of a ring [math]\displaystyle{ R^{\prime} }[/math] and a homomorphism [math]\displaystyle{ f  : R \rightarrow R^{\prime} }[/math], we show that if [math]\displaystyle{ f_x : R[x] \rightarrow R^{\prime}[x] }[/math] is the induced homomorphism of [math]\displaystyle{ f }[/math], that is, [math]\displaystyle{ f_x (\sum_{i = 0}^n a_i^{x_i}) = \sum_{i = 0}^n (f(a_i)) x_i }[/math], then [math]\displaystyle{ f_x^{-1} [(\sqrt{B})_x] = (\sqrt{f^{-1}(B)})_x }[/math].
Keywords: Complex trapezoidal intuitionistic fuzzy number (CTrIFN), Trapezoidal intuitionistic fuzzy number (TrIFN).
AMS Classification: 03E72, 05C72, 05C65, 47N60.
References:
  1. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg.
  2. Parvathi, R., & Malathi, C. (2012). Arithmetic operations on symmetric trapezoidal intuitionistic fuzzy numbers, International Journal of Soft Computing and Engineering, 2(2), 268–273.
  3. Buckley, J. J. (1989). Fuzzy complex numbers, Fuzzy Sets and Systems, 33, 333–345.
  4. Beaula, T., & Priyadharsini, M. (2015). Operations on intuitionistic trapezoidal fuzzy numbers using interval arithmetic, Int. J. of Fuzzy Mathematical Archive, 9(1), 125–133.
  5. Moore, R. E. (1996). Interval Analysis, Prentice Hall, India.
  6. Burillo, P., Bustince, H., & Mohedano, V. (1994). Some definition of intuitionistic fuzzy number, Fuzzy Based Expert Systems, Sofia, Bulgaria, 1994, 28–30.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.