As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Publication's assessment with intuitionistic fuzzy estimations

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/18/4/26-31
Title of paper: Publication's assessment with intuitionistic fuzzy estimations
Author(s):
Sotir Sotirov
“Prof. Asen Zlatarov” University, 1 “Prof. Yakimov” Blvd, Bourgas 8000, Bulgaria
ssotirov@btu.bg
Evdokia Sotirova
“Prof. Asen Zlatarov” University, 1 “Prof. Yakimov” Blvd, Bourgas 8000, Bulgaria
esotirova@btu.bg
Ivelina Vardeva
“Prof. Asen Zlatarov” University, 1 “Prof. Yakimov” Blvd, Bourgas 8000, Bulgaria
iveto@btu.bg
Beloslav Riečan
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-974 01 Banská Bystrica
Mathematical Institute of Slovak Acad. of Sciences, Štefánikova 49, SK-81473 Bratislava
riecan@mat.savba.skriecan@fpv.umb.sk
Presented at: 8th IWIFS, Sofia, 9 October 2012
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 18 (2012) Number 4, pages 26—31
Download:  PDF (267  Kb, File info)
Abstract: In the paper we investigate how to apply some data mining techniques for clustering and classification the assessment of the different publications and articles. For this aim we propose to use neural network and decision tree to analyze given collection of data. We use the Intuitionistic fuzzy estimation as an input vector for the self organizing map that gives us 6 clusters. To predict the next data we must have the rules that can be obtained from the decision tree.
Keywords: Learning system, Data mining, Decision tree, Neural network.
AMS Classification: 03E72.
References:
  1. Atanassov, K., Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin, 1999.
  2. Atanassov, K., Intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 20, 1986, 87–96.
  3. Glenn, J., Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining. John Wiley, 2006.
  4. Reljin, I., B. Reljin, G. Jovanović, Clustering and Mapping Spatial-Temporal Datasets Using SOM Neural Networks, Journal of Automatic Control, University of Belgrade, Vol. 13, 2003, No. 1, 55–60.
  5. Kohonen, T., Self-Organizing Maps. Series in Information Sciences, Vol. 30. Springer, Heidelberg. Second ed., 1997.
  6. Kohonen, T., J. Hynninen, J. Kangas, J. Laaksonen, SOM_PAK: The self-organizing map program package. Report A31. Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland, 1996. Available online: http://www.cis.hut.fi/research/som_lvq_pak.shtml.
  7. Kaedi, M., M. Nematbakhsh, N. Ghasem-Aghaee, Fuzzy Association Rule Reduction Using Clustering in SOM Neural Network, IADIS, European Conference Data Mining, 2008, 139–143.
  8. Paul Mangiameli, Shaw K. Chen, David West, A comparison of SOM neural network and hierarchical clustering methods, Neural Networks and Operations Research/Management Science, European Journal of Operational Research, Vol. 93, 1996, Issue 2, 402–417.
  9. Wasserman, P. D., Neural Computing: Theory and Practice. Van Nostrand Reinhold, New York, 1989.
  10. Sotirov, S., D. Orozova, E. Sotirova, Neural network for defining intuitionistic fuzzy sets in e-learning, Notes on Intuitionistic Fuzzy Sets, Vol. 15, 2009, No. 2, 33–36.
  11. Sotirov, S., E. Sotirova, M. Krawczak, Application of data mining in digital university: multilayer perceptron for lecturer’s evaluation with intuitionistic fuzzy estimations, Issues in Intuitionistic Fuzzy Sets and Generalized Nets, Vol. 8, Warsaw, Poland, 2010, 102–107.
  12. Sotirova, E., Classification of the students’ intuitionistic fuzzy estimations by a 3-dimensional self organizing map, Notes on Intuitionistic Fuzzy Sets, Vol. 17, 2011, No. 4, 64–68.
  13. Shannon, A., Atanassov K., Orozova D., Krawczak M., Sotirova E., Melo-Pinto P., Petrounias I., Kim T. Generalized Nets and Information Flow within a University, Warsaw, Warsaw School of Information Technology, 2007.
  14. Shannon, A., D. Langova-Orozova, E. Sotirova, I. Petrounias, K. Atanassov, M. Krawczak, P. Melo-Pinto, T. Kim. Generalized Net Modelling of University Processes. North Sydney: KvB Visual Concepts Pty Ltd, Monograph, No. 7, 2005.
  15. XLMiner Data Mining Add-in For Excel, www.xlminer.com.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.