As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Properties of interval-valued intuitionistic fuzzy vector spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/25/1/12-20
Title of paper: Properties of interval-valued intuitionistic fuzzy vector spaces
Author(s):
R. Santhi
PG and Research Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi, Tamil Nadu, 642001 India
santhifuzzy@yahoo.co.in
N. Udhayarani
Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi, Tamil Nadu, 642001 India
udhayaranin@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 25 (2019), Number 1, pages 12–20
DOI: https://doi.org/10.7546/nifs.2019.25.1.12-20
Download:  PDF (200  Kb, File info)
Abstract: In this paper we introduced and studied the properties of interval-valued intuitionistic fuzzy vector spaces (in brief IVIF space) and its IVIF standard basis. We use the concept of

max-union and min-intersection algebra to define interval-valued ituitionistic fuzzy vector space.

Keywords: Interval-valued intuitionistic fuzzy vector space, IVIF subspace, IVIF span, IVIF spanning set, dim(S), IVIF basis, IVIF standard basis.
AMS Classification: 46A40, 52A07.
References:
  1. Atanassov, K. T. Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  2. Atanassov, K. T. & Gargov, G. (1989). Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31, 343–349.
  3. Chiney, M. & Samanta, S. K. (2017). Intuitionistic fuzzy basis of an intuitionistic fuzzy vector space, Notes on Intuitionistic Fuzzy Sets, 23 (4), 62–74.
  4. Gehrke, M., Walker, C., & Walker, E., (2001). Some basic theory of interval-valued fuzzy sets, Transactions of the Joint IFSA World Congress and 20-th NAFIPS International Conference, July 25–28, 2001, Vancouver, British Columbia, 1332–1336.
  5. Hosseini, S. B., O’Regan, D. & Saadati, R. (2007). Some results on intuitionistic fuzzy spaces, Iranian Journal of Fuzzy Systems, 4 (1), 53–64.
  6. Huang, C. E. & Shi, F. G. (2012). On the fuzzy dimensions of fuzzy vector spaces, Iranian Journal of Fuzzy Systems, 9 (4), 141–150.
  7. Katsaras, A. K. & Liu, D. B. (1997). Fuzzy vector spaces and fuzzy topological vector spaces, Journal of Mathematical Analysis and Applications, 58, 135–146.
  8. Kumar, R. (1992). Fuzzy vector spaces and fuzzy cosets, Fuzzy Sets and Systems, 45, 109–116.
  9. Lubczonok, P. (1990). Fuzzy vector spaces, Fuzzy Sets and Systems, 38, 329–343.
  10. Malik, D.S. & Mordeson, J.N.(1991).Fuzzyvectorspaces, Inform.Sci., 55(1-3), 271–281.
  11. Mondal, S. (2012). Interval-valued fuzzy vector space, Annals of Pure and Applied Mathematics, 2 (1), 86–95.
  12. Mordeson, J. N. (1993). Bases of fuzzy vector spaces, Inform. Sci., 67 (1–2), 87–92.
  13. Pradhan, R., & Pal, M. (2012). Intuitionistic fuzzy linear transformations, Annals of Pure and Applied Mathematics, 1 (1), 57–68.
  14. Pradhan, R., & Pal, M. (2014). Solvability of system of intuitionistic fuzzy linear equations, International Journal of Fuzzy Logic Systems, 4 (3), 13–24.
  15. Shi, F. G. & Huang, C. E. (2010). Fuzzy bases and the fuzzy dimension of fuzzy vector space, Mathematical Communications, 15 (2), 303–310.
  16. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.