Title of paper:
|
On statistical concepts of intuitionistic fuzzy soft set theory via utility
|
Author(s):
|
Santanu Acharjee
|
Economics and Computational Rationality Group, Department of Mathematics, Debraj Roy College, Golaghat-785621, Assam, India
|
sacharjee326@gmail.com , santanuacharjee@rediffmail.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 25 (2019), Number 1, pages 64–78
|
DOI:
|
https://doi.org/10.7546/nifs.2019.25.1.64-78
|
Download:
|
PDF (248 Kb, File info)
|
Abstract:
|
In this paper, we establish the foundation of intuitionistic fuzzy soft statistics with the help of utility theory of mathematical economics. We use ideas of (α,β)-cut with respect to utility theory to prove results related to intuitionistic fuzzy soft mean, intutionistic fuzzy soft covariance, intuitionistic fuzzy soft attribute correlation coefficients, etc. Suitable examples are provided in each case. Concepts of utility-wise representation of intuitionistic fuzzy soft have been discussed. Here, we also discuss the generating process of a new intuitonistic fuzzy soft set from the old one with respect to utility theory and prove some important theorems.
|
Keywords:
|
IFS, IFSS, Statistics, Soft set, Utility theory.
|
AMS Classification:
|
03E72, 03E99, 62A86, 62A99, 91B16, 91D99.
|
References:
|
- Acharjee, S. (2017). New results for Kharal’s similarity measures of soft sets, New Math. Nat. Comput, 13 (01), 55–60.
- Acharjee, S., & Tripathy, B. C. (2017). Some results on soft bitopology, Bol. Soc. Paran. Math, 35 (1), 269–279.
- Acharjee, S., & Mordeson, J. N. (2017). Soft statistics with respect to utility and application in human trafficking, New Math. Nat. Comput., 13 (03), 289–310.
- Acharjee, S., Sarma, D. J., Hanneman, R. A., Mordeson, J. N., & Malik, D. S. (2018). Fuzzy soft attribute correlation coefficient and application to data of human trafficking, Proyecciones Jour. of Math., 37 (4), 637–681.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica-Verlag, Heidelberg.
- Çağman, N., Karataş, S., & Enginoglu, S. (2011). Soft topology, Comput. Math. Appl., 62, 351–358.
- Chen, D. (2005). The parametrization reduction of soft sets and its application, Comput. Math. Appl., 49, 757–763.
- Huang, H. L. (2017). An improved correlation coefficient of intuitionistic fuzzy sets, Jour. Intel. Syst., 13 pages, DOI: https://doi.org/10.1515/jisys-2017-0094.
- Li, H., & Shen, Y. (2012). Similarity measures of fuzzy soft sets based on different distances, Fifth Int. Symp. Comput. Intel. and Design., 28-29 Oct 2012, Hangzhou, China, 527–529.
- Maji, P. K., Biswas, R., & Roy, A. R. (2001). Fuzzy soft sets,Jour. Fuzzy Math., 9 (3), 589–602.
- Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory, Comput. Math. Appl., 45, 555–562.
- Maji, P. K., Roy, A. R., & Biswas, R. (2004). On Intuitionistic Fuzzy Soft Sets, Jour. Fuzzy Math., 12 (3), 669–683.
- Mitchell, H. B. (2004). A correlation coefficient for intuitionistic fuzzy sets, Int. J. Intel. Syst., 19 (5), 483–490.
- Molodtsov, D. (1999). Soft set theory – first results, Comput. Math. Appl., 37, 19–31.
- Mordeson, J. N., Mallenby, M., Mathew, S., & Acharjee, S. (2017). Human trafficking: Policy intervention, New Math. Nat. Comput., 13 (03), 341–358.
- Pei, D., & Miao, D. (2005). From soft sets to information systems, Proceedings of the IEEE international conference on granular computing, 25-27 July 2005, Beijing, China, 2, 617–621.
- Szmidt, E., & Kacprzyk, J. (2010). Correlation of Intuitionistic Fuzzy Sets, International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, June 28-July 2, 2010, Dortmund, Germany, LNAI 6178, 169–177.
- Xiao, Z., & Zou, Y. (2014). A comparative study of soft sets with fuzzy sets and rough sets, Jour. Intel. Fuzzy Syst., 27, 425–434.
- Zadeh, L. A. (1965). Fuzzy sets, Inform. Contrl., 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|