As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: 22nd International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets • 18 October 2024 • Warsaw, Poland / online (hybrid mode).
Deadline for submissions: 1 October 2024.

Issue:On generalized double statistical convergence of order α in intuitionistic fuzzy n-normed spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/4/13-24
Title of paper: On generalized double statistical convergence of order α in intuitionistic fuzzy n-normed spaces
Author(s):
Ekrem Savaş
Department of Mathematics, Istanbul Commerce University, Sutluce-Istanbul, Turkey
ekremsavas@yahoo.com
Presented at: 3rd International Conference on Intuitionistic Fuzzy Sets, 9 Aug – 1 Sep 2016, Mersin, Turkey
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 4, pages 13—24
Download:  PDF (260 Kb  Kb, File info)
Abstract: In the present paper, we introduce the notion [V, λ]2(I)-summability and ideal λ-double statistical convergence of order α with respect to the intuitionistic fuzzy n-normed (μ,ν). In addition, we present a series of inclusion theorems associated with these new definitions.
Keywords: Ideal, Filter, I-double statistical convergence, Iλ-double statistical convergence order α, [V, λ]2(I)-summability, closed subspace.
AMS Classification: 40G99
References: 260
  1. Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
  2. Cakalli, H. (2009) A study on statistical convergence, Funct. Anal. Approx. Comput., 1(2), 19–24, MR2662887.
  3. Colak, R. (2010) Statistical convergence of order α, Modern methods in Analysis and its Applications, New Delhi, India, Anamaya Pub., 121–129.
  4. Colak, R., & Bektas, C. A. (2011) λ-statistical convergence of order α, Acta Math. Scientia, 31B(3), 953–959.
  5. Das, P., Savaş, E., & Ghosal, S. Kr. (2011) On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24, 1509–1514.
  6. El Naschie, M. S. (1998) On certainty of Cantorian geometry and two-slit experiment, Chaos, Solitons & Fractals, 9, 517–529.
  7. Fast, H. (1951) Sur la convergence statistique, Colloq. Math., 2, 241–244.
  8. Fridy, J. A. (1985) On statistical convergence, Analysis, 5, 301–313.
  9. Gähler, S. (1965) Lineare 2-normietre räume, Math. Nachr., 28, 1–43.
  10. Gähler, S. (1969) Untersuchungen uber verallgemeinerte m-metrische r¨aume, I, II, III, Math. Nachr., 40, 165–189.
  11. Gunawan, H., & Mashadi, M. (2001) On n-normed spaces, Int. J. Math. Math. Sci., 27, 631–639.
  12. Karakus, S., Demirci, K. & Duman, O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35, 763–769.
  13. Kim, S.S., & Cho, Y.J. (1996) Strict convexity in linear n-normed spaces, Demonst. Math., 29, 739–744.
  14. Malceski, R. (1997) Strong n-convex n-normed spaces, Mat. Bilt., 21, 81–102.
  15. Kostyrko, P., Šalát, T., & Wilczynki, W. (2000–2001) I-convergence, Real Anal. Exchange, 26(2), 669–685.
  16. Kumar, V., & Mursaleen, M. (2011) On (λ, μ)-Statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2), 109–120.
  17. Maio, G. D., & Kocinac, L. D. R. (2008) Statistical convergence in topology, Topology Appl., 156, 28–45.
  18. Misiak, A. (1989) n-inner product spaces, Math. Nachr., 140, 299–319.
  19. Mursaleen, M. (2000) λ-statistical convergence, Math. Slovaca, 50, 111–115.
  20. Mursaleen, M., & Edely, O. H. H. (2003) Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), 223–231.
  21. Mursaleen, M., Mohiuddine, S. A., & Edely, O. H. H. (2009) On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59(2010), 603–611.
  22. Mursaleen, M., & Mohiuddine, S. A. (2009) Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 41, 2414–2421.
  23. Mohiuddine, S. A., & Danish Lohani, Q. M. (2009) On generalized statistical convergence in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 42, 1731–1737.
  24. Park, J. H. (2004) Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22, 1039–1046.
  25. Saadati, R., & Park, J. H. (2006) On the intuitioistic fuzzy topologicial spaces, Chaos Solitons Fractals, 27, 331–344.
  26. Šalát, T. (1980) On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139–150.
  27. Savaş, E. (2011) Pratulananda Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24, 826–830.
  28. Savaş, E. (2010) Δ m-strongly summable sequences spaces in 2-Normed Spaces defined by Ideal Convergence and an Orlicz Function, App. Math. Comp., 217, 271–276.
  29. Savaş, E., Das, P., & Sudipta, D. (2012) A note on strong matrix summability via ideals, Appl. Math. Lett., 25(4), 733–738.
  30. Savaş, E. (2013) Some I-convergent sequence spaces of fuzzy numbers defined by infinite matrix. Math. Comput. Appl., 18, 84–93.
  31. Savaş, E. (2012) On generalized double statistical convergence via ideals, Proc. of the Fifth Saudi Science Conference, 16-18 April, 2012.
  32. Savaş, E. (2012) On strong double matrix summability via ideals, Filomat, 26(6), 1143–1150.
  33. Savaş, E. (2009)λ-double sequence spaces of fuzzy real numbers defined by Orlicz function, Math. Comm., 14(2), 287–297.
  34. Savaş, E. (2000) On strongly λ-summable sequences of fuzzy numbers. Inform. Sci., 125 (1–4), 181–186.
  35. Savaş, E., & Mursaleen, M. (2004) On statistically convergent double sequence of fuzzy numbers, Information Sciences, 162, 183–192.
  36. Sen, M., & Debnath, P. (2011) Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Math. Comput. Modelling, 54, 2978–2985.
  37. Schoenberg, I. J. (1959) The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361–375.
  38. Schweizer, B., & Sklar, A. (1960) Statistical metric spaces, Pacific J. Math., 10, 313–334.
  39. Thillaigovindan, N., Shanthi, S. A., & Jun, Y. B. (2011) On lacunary statistical convergence in intuitionistic fuzzy n-normed linear space, Annals of Fuzzy Math. and Inf., 1(2), 119–131.
  40. Vijayabalaji, S., Narayanan, A. (2005) Fuzzy n-normed linear space, J. Math. Math. Sci., 24, 3963–3977.
  41. Zadeh, L. A. (1965) Fuzzy sets, Inform. Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.