Submit your research to the International Journal "Notes on Intuitionistic Fuzzy Sets". Contact us at

Call for Papers for the 27th International Conference on Intuitionistic Fuzzy Sets is now open!
Conference: 5–6 July 2024, Burgas, Bulgaria • EXTENDED DEADLINE for submissions: 15 APRIL 2024.

Issue:On I-lacunary summability methods of order α in intuitionistic fuzzy 2-normed spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Title of paper: On I-lacunary summability methods of order α in intuitionistic fuzzy 2-normed spaces
Ekrem Savaş
Department of Mathematics, Istanbul Ticaret University, Sütlüce-Istanbul, Turkey
Published in: "Notes on IFS", Volume 23, 2017, Number 4, pages 15—30
Download:  PDF (242 Kb  Kb, Info)
Abstract: In this paper, we introduce and study the notion I-statistical convergence of order α, and I-lacunary statistical convergence of order α with respect to the intuitionistic fuzzy 2-normed space, investigate their relationship and also we have proved some inclusion theorems.
Keywords: Ideal, Filter, I-statistical convergence, I-lacunary statistical convergence, Statistical convergence of order α
AMS Classification: Primary 40G99
  1. Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
  2. Atanassov, K., Pasi, G., & Yager, R. (2002) Intuitionistic fuzzy interpretations of multiperson multicriteria decision making, Proceedings of 2002 First International IEEE Symposium Intelligent Systems, 1, 115–119.
  3. Bhunia, S., Das, P., & Pal, S. (2012) Restricting statistical convergenge, Acta Math. Hungar, 134(1-2), 153–161.
  4. Colak, R. (2010) Statistical convergence of order α, Modern methods in Analysis and its Applications, New Delhi, India, Anamaya Pub., 121–129.
  5. Das, P., & E. Savaş (2014) On I-statistical and I-lacunary statistical convergence of order α, Bull. iranian Soc., 40(2), 459–472.
  6. Das, P., Savaş, E., & Ghosal, S. Kr. (2011) On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24, 1509–1514.
  7. Fast, H. (1951) Sur la convergence statistique, Colloq. Math., 2, 241–244.
  8. Fridy, J. A. (1985) On statistical convergence, Analysis, 5, 301–313.
  9. Fridy, J. A., & Orhan, C. (1993) Lacunary statistical convergence, Pacific J. Math., 160, 43–51.
  10. Gahler, S. (1965) Linear 2-normietre Raume, Math. Nachr., 28, 1–43.
  11. Karakus, S., Demirci, K., & Duman, O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons Fractals 35, 763–769.
  12. Kostyrko, P., Salat, T., & Wilczynki, W. (2000-2001) I-convergence, Real Anal. Exchange, 26(2), 669–685.
  13. Mohiuddine, S. A., & Savaş, E. (2012) Lacunary statistically convergent double sequences in probabilistic normed spaces, Ann. Univ. Ferrara, 58, 331–339.
  14. Mohiuddine, S. A., & Aiyub, M. (2012) Lacunary statistical convergence in random 2- normed spaces, Appl. Math. Inf. Sci, 6, 581–585.
  15. Mursaleen, M., & Mohiuddine, S. A. (2009) On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math., 233, 142–149.
  16. Mursaleen, M., & Danish Lohani, Q. M. (2009) Intuitionistic fuzzy 2-normed space and some relates concepts, Chaos, Solitons and Fractals, 42, 224–234.
  17. Mursaleen, M., Mohiuddine S. A., & Edely, H.H. (2010) On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59, 603–611.
  18. Nanda, S. (1989) On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33, 123–126.
  19. Nuray, F., & Savaş, E. (1994) Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 99(3), 353–355.
  20. Park, J. H. (2004) Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22, 1039–1046.
  21. Saadati, R., & Park, J. H. (2006) On the intuitioistic fuzzy topologicial spaces, Chaos, Solitons and Fractals, 27, 331–344.
  22. Salat, T. (1980) On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139–150.
  23. Savaş, E., & Gurdal, M. (2014) Certain summability methods in intuitionistic fuzzy normed spaces, Journal of Intelligent & Fuzzy Systems, 27, 1621–1629.
  24. Savaş, E., & Das, P. (2011) A generalized statistical convergence via ideals, Appl. Math. Lett., 24, 826–830.
  25. Savaş, E. (2015) On I-lacunary statistical convergence of order α for sequences of sets, Filomat, 29(6), 1223–1229.
  26. Savaş, E. (2015) On some summability methods using ideals and fuzzy numbers, J. Intell. Fuzzy Systems, 28(4), 1931–1936
  27. Savaş, E. (2013) On generalized I-statistical convergence of order α, Iran. J. Sci. Technol. Trans. A Sci. 37(3), Special issue: Mathematics, 397–402.
  28. Savaş, E. (2013) Some I-convergent sequence spaces of fuzzy numbers defined by infinite matrix, Math. Comput. Appl., 18(2), 84–93.
  29. Savaş, E. (2012) On generalized A-difference strongly summable sequence spaces defined by ideal convergence on a real n-normed space, J. Inequal. Appl., 87, 9 pp.
  30. Savaş, E. I-lacunary vector valued sequence spaces in 2-normed spaces via Orlicz function, Aligarh Bull. Math. 30(1-2), 25–34.
  31. Savaş, E., & Gurdal, M. (2015) A generalized statistical convergence in intuitionistic fuzzy normed spaces, ScienceAsia 41, 289–294.
  32. Savaş, E. (2015) Generalized statistical convergence in intuitionistic fuzzy 2-normed space, Appl. Math. Inf. Sci. 9(1L), 59–63.
  33. Savaş, E. (2015) On λ-statistical convergence of order α in intuitionistic fuzzy normed spaces, Notes on Intuitionistic Fuzzy Sets, 21(4), 13–22.
  34. Savaş, E. Iθ-summability methods in intuitionistic fuzzy 2-normed spaces, (to appear).
  35. Schoenberg, I. J. (1959) The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361–375.
  36. Schweizer, B., & Sklar, A. (1960) Statistical metric spaces, Pacific J. Math., 10, 313–334.
  37. Sen, M., & Debnath, P. (2011) Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Math. Comput. Modelling, 54, 2978–2985.
  38. Tripathy, B. C., & Dutta, A. J. (2010) Bounded variation double sequence space of fuzzy real numbers, Computers and Mathematics with Applications, 59, 1031–1037.
  39. Tripathy, B. C., & Dutta, A. J. (2013) Lacunary bounded variation sequence of fuzzy real numbers, Journal of Intelligent and Fuzzy Systems, 24, 185–189.
  40. Zadeh, L. A. (1965) Fuzzy sets, Inform. Control, 8, 338–353.

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.