Title of paper:
|
On α- and α*- separation axioms in intuitionistic fuzzy topological spaces
|
Author(s):
|
Rekha Srivastava
|
Department of Applied Mathematics,Institute of Technology, Banaras Hindu University,Varanasi, 221005, India
|
rekhasri@bhu.ac.in
|
Amit Kumar Singh
|
Department of Applied Mathematics,Institute of Technology, Banaras Hindu University,Varanasi, 221005, India
|
amitkitbhu@gmail.com
|
|
Presented at:
|
15th ICIFS, Burgas, 11-12 May 2011
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 17 (2011) Number 2, pages 35—43
|
Download:
|
PDF (172 Kb, File info)
|
Abstract:
|
In this paper we introduce the gradation of the separation axioms T0, T1 and T2 in an intuitionistic fuzzy topological space in the sense of Mondal and Samanta [6]. Using these concepts we have defined α- and α*- Ti intuitionistic fuzzy topological spaces, i = 0, 1, 2, and studied them in detail.
|
Keywords:
|
Intuitionistic fuzzy set, Intuitionistic fuzzy topological space, Separation axioms, Bifuzzy topological space.
|
AMS Classification:
|
54A40, 03E72
|
References:
|
- Atanassov, K.T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- Chang, C.L. Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- Fang, J. I-FTOP is isomorphic to I-FQN and I-AITOP, Fuzzy Sets and Systems 147 (2004) 317–325.
- Kubiak, T. On fuzzy topologies, Ph.D Thesis, A. Mickiewicz, Poznan, Poland, 1985.
- Pu, P.-M. Y.-M. Liu. Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore- Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
- Mondal, T.K. , S.K. Samanta. On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002) 323–336.
- Abu Safiya, A.S. , A.A. Fora, M.W. Warner. Fuzzy separation axioms and fuzzy continuity in fuzzy bitopological spaces, Fuzzy Sets and Systems 62 (1994) 367–373.
- Šostak, A.P. On fuzzy topological structure, Rend. Circ. Mat. Palermo (Suppl. Ser. II) 11 (1985) 89–103.
- Srivastava, M., R. Srivastava. On fuzzy pairwise - T0 and fuzzy pairwise - T1 bitopological spaces, Indian J. Pure Appl. Math. 32 (2001) 387–396.
- Srivastava, R., S.N. Lal, and A.K. Srivastava. Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981) 497-506.
- Srivastava, R., S.N. Lal, A.K. Srivastava. On fuzzy T0 and R0 topological spaces, J. Math. Anal. Appl. 136 (1988) 66–73.
- Srivastava, R., S.N. Lal, A.K. Srivastava. On fuzzy T1 topological spaces, J. Math. Anal. Appl. 136 (1988) 124–130.
- Srivastava, R., M. Srivastava. On pairwise Hausdorff fuzzy bitopological spaces, J. Fuzzy Math. 5 (1997) 553–564.
- Wong, C.K. Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974) 316–328.
- Yue, Y., J. Fang. On separation axioms in I-fuzzy topological spaces, Fuzzy Sets and Systems 157 (2006) 780–793.
- Zadeh, L.A. Fuzzy sets, Inform. and Control 8 (1965) 338–353.
- Zadeh, L.A. A fuzzy set theoretic interpretation of linguistic hedges, Memorandum No. ERLM335 University of California, Berkeley (1972).
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|