From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation
Jump to search
shortcut
|
http://ifigenia.org/wiki/issue:nifs/9/3/22-25
|
Title of paper:
|
Some ways and means to define addition and multiplication operations between intuitionistic fuzzy sets
|
Author(s):
|
Radoslav Tzvetkov
|
Centre for Biomedical Engineering - Bulgarian Academy of Sciences, Bl. 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
|
rado_tzv@clbme.bas.bg
|
|
Presented at:
|
Seventh International Conference on IFSs, Sofia, 23-24 August 2003
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 9 (2003) Number 3, pages 22-25
|
Download:
|
PDF (2204 Kb, File info)
|
Abstract:
|
In this paper we introduce some operations on IFS [1]. P. Burillo and H. Bustince introduced [math]\displaystyle{ T }[/math]- and [math]\displaystyle{ S }[/math]- norms as follows:
[math]\displaystyle{ P(A, B) = \{ \langle x, T(\mu_A(x), \mu_B(x)), S(\nu_A(x), \nu_B(x)) \rangle |x \in E \} }[/math]
where
[math]\displaystyle{ 0 \le T(\mu_A(x), \mu_B(x)) + S(\nu_A(x), \nu_B(x)) \le 1 }[/math]
We shall define:
[math]\displaystyle{ \overline{P}(A, B) = \{ \langle x, S(\mu_A(x), \mu_B(x)), T(\nu_A(x), \nu_B(x)) \rangle |x \in E \}. }[/math]
Therefore [math]\displaystyle{ \neg \overline{P} \equiv P }[/math], where [math]\displaystyle{ \equiv }[/math] is the "equivalence" relation between operations.
|
References:
|
- Atanassov, K., Intuitionistic Fuzzy Sets, Physica Verlag, 1999.
- Lang, S., Algebra, Mir, Moscow, 1968 (Russian translation).
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|