As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:K-NN intuitionistic fuzzy classifier

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/31/4/496-510)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/4/496-510
Title of paper: k-NN intuitionistic fuzzy classifier
Author(s):
Eulalia Szmidt     0000-0003-2192-6905
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
WIT Academy, ul. Newelska 6, 01-447 Warsaw, Poland
szmidt@ibspan.waw.pl
Janusz Kacprzyk     0000-0003-4187-5877
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
WIT Academy, ul. Newelska 6, 01-447 Warsaw, Poland
kacprzyk@ibspan.waw.pl
Paweł Bujnowski     0000-0001-9215-0046
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
pbujno@ibspan.waw.pl
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 4, pages 496–510
DOI: https://doi.org/10.7546/nifs.2025.31.4.496-510
Download:  PDF (241  Kb, File info)
Abstract: The k-NN (k-Nearest Neighbor) classifier is one of the commonly used classifiers. We present a modification of this classifier based on Atanassov's intuitionistic fuzzy sets (IFSs, for short). We show, using benchmark data from UCI Machine Learning Repository, that the classifier we propose achieves very good results.
Keywords: Intuitionistic fuzzy sets, Classification, k-NN classifier.
AMS Classification: 03E72.
References:
  1. Atanassov, K. (1983). Intuitionistic fuzzy sets. VII ITKR Session. Sofia (Centr. Sci.-Techn. Libr. of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
  2. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. SpringerVerlag, Heidelberg.
  3. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer-Verlag, Berlin.
  4. Atanassova, V. (2004). Strategies for decision making in the conditions of intuitionistic fuzziness. Proceedings of International Conference 8th Fuzzy Days, Dortmund, Germany, 263–269.
  5. Bujnowski, P., Szmidt, E., & Kacprzyk, J. (2014). Intuitionistic fuzzy decision trees - A new approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., & Zurada, J. (Eds.). Artificial Intelligence and Soft Computing, Part I. Springer, Switzerland, 181–192.
  6. Bustince, H., Mohedano, V., Barrenechea, E., & Pagola, M. (2006). An algorithm for calculating the threshold of an image representing uncertainty through A-IFSs. IPMU’2006, 2383–2390.
  7. Campagner, A., Dorigatti, V., & Ciucci, D. (2020). Entropy-based shadowed set approximation of intuitionistic fuzzy sets. International Journal of Intelligent Systems, 35(12), 2118–2139.
  8. De Carvalho, F. A. T. (1994). Proximity coefficients between Boolean symbolic objects. In: Diday et al. (Eds.). New Approaches in Classification and Data Analysis. Springer-Verlag, Heidelberg, 387–394.
  9. De Carvalho, F. A. T. (1998). Extension based proximities between Boolean symbolic objects, In: Hayashi, C. et al. (Eds.), Data Science, Classification and Related Methods. Springer-Verlag, Tokyo, 370–378.
  10. De Carvalho, F. A. T., & Souza, R. M. C. (1998). Statistical proximity functions of Boolean symbolic objects based on histograms. In: Rizzi, A., Vichi, M., Bock, H.H. (Eds.). Advances in Data Science and Classification, Springer-Verlag, Heidelberg, 391–396.
  11. Derrac, J., Garcia, S., & Herrera, F. (2014). Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects. Information Sciences, 260, 98–119.
  12. Hadjitodorov, S. (1995). An intuitionistic fuzzy sets application to the K-NN method. Notes on Intuitionistic Fuzzy Sets, 1(1), 66–69.
  13. Hadjitodorov, S. (1998). Intuitionistic fuzzy versions of K-NN method and their application to respiratory distress syndrome detection. Notes on Intuitionistic Fuzzy Sets, 4(4), 62–67.
  14. Hadjitodorov, S. (2000). A F-operator intuitionistic fuzzy version of the nearest neighbor classifier. Notes on Intuitionistic Fuzzy Sets, 6(1), 1–6.
  15. Kuncheva, L. (1995). An intuitionistic fuzzy k-nearest neighbors rule. Notes on Intuitionistic Fuzzy Sets, 1(1), 56–60.
  16. Maggiora, G., & Szmidt, E. (2021). An intuitionistic fuzzy set analysis of drug-target interactions. MATCH Communications in Mathematical and in Computer Chemistry, 85(3), 465–498.
  17. Roeva, O., & Michalikova, A. (2013). Generalized net model of intuitionistic fuzzy logic control of genetic algorithm parameters. Notes on Intuitionistic Fuzzy Sets, 19(2), 71–76.
  18. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
  19. Syriopoulos, P. K., Kalampalikis, N. G., Kotsiantis, S. B., & Vrahatis, M. N. (2025). kNN Classification: A review. Annals of Mathematics and Artificial Intelligence, 93, 43–75.
  20. Szmidt, E. (2014). Distances and Similarities in Intuitionistic Fuzzy Sets. Springer.
  21. Szmidt, E., & Baldwin, J. (2006). Intuitionistic fuzzy set functions, mass assignment theory, possibility theory and histograms. Proceedings of 2006 IEEE World Congress on Computational Intelligence, pp. 237–243.
  22. Szmidt, E., & Kacprzyk, J. (1996). Group decision making via intuitionistic fuzzy sets. Proceedings of FUBEST’96, Sofia, Bulgaria, pp. 107–112.
  23. Szmidt, E., & Kacprzyk, J. (1997). On measuring distances between intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 3(4), 1–13.
  24. Szmidt, E., & Kacprzyk, J. (1998). Group decision making under intuitionistic fuzzy preference relations. Proceedings of IPMU’98, pp. 172–178.
  25. Szmidt, E., & Kacprzyk, J. (1998). Applications of intuitionistic fuzzy sets in decision making. Proceedings of EUSFLAT’99, Navarra, pp. 150–158.
  26. Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505–518.
  27. Szmidt, E., & Kacprzyk, J. (2001). Analysis of consensus under intuitionistic fuzzy preferences. Proceedings of International Conference in Fuzzy Logic and Technology. Leicester, UK, pp. 79–82.
  28. Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118(3), 467–477.
  29. Szmidt, E., & Kacprzyk, J. (2002). Analysis of agreement in a group of experts via distances between intuitionistic fuzzy preferences. Proceedings of the 9th International Conference IPMU’2002, Annecy, France, pp. 1859–1865.
  30. Szmidt, E., & Kacprzyk, J. (2002). Evaluation of agreement in a group of experts via distances between intuitionistic fuzzy sets. Proceedings of 2002 International IEEE Symposium on Intelligent Systems (IS’2002), Varna, Bulgaria, pp. 166–170.
  31. Szmidt, E., & Kacprzyk, J. (2004). A concept of similarity for intuitionistic fuzzy sets and its use in group decision making. Proceedings of 2004 IEEE Conference on Fuzzy Systems, Budapest, pp. 1129–1134.
  32. Szmidt, E., & Kacprzyk, J. (2005). A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making. In: Torra, V., Narukawa, Y., & Miyamoto. S. (Eds.). Modelling Decisions for Artificial Intelligence. Lecture Notes on Artifiial Intelligence, Vol. 3558, pp. 272–282. Springer.
  33. Szmidt, E., & Kacprzyk, J. (2005). Distances between intuitionistic fuzzy sets and their applications in reasoning. In: Halgamuge, S., & Wang, L. (Eds.). Computational Intelligence for Modelling and Prediction. Studies in Computational Intelligence, Vol 2. pp. 101–116. Springer.
  34. Szmidt, E., & Kacprzyk, J. (2005). New measures of entropy for intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 11(2), 12–20.
  35. Szmidt, E., & Kacprzyk, J. (2006). An application of intuitionistic fuzzy set similarity measures to a multi-criteria decision making problem. Proceedings of ICAISC 2006. Lecture Notes on Artificial Intelligence, Vol. 4029, pp. 314–323. Springer-Verlag.
  36. Szmidt, E., & Kacprzyk, J. (2006). Distances between intuitionistic fuzzy sets: Straightforward approaches may not work. Proceedings of 3rd International IEEE Conference Intelligent Systems (IEEE IS’06), London, pp. 716–721.
  37. Szmidt, E., & Kacprzyk, J. (2007). A new similarity measure for intuitionistic fuzzy sets: Straightforward approaches may not work. Proceedings of 2007 IEEE International Conference on Fuzzy Systems, pp. 481–486.
  38. Szmidt, E., & Kacprzyk, J. (2007). Some problems with entropy measures for the Atanassov intuitionistic fuzzy sets. Applications of Fuzzy Sets Theory. Lecture Notes on Artificial Intelligence, Vol. 4578, pp. 291–297. Springer-Verlag.
  39. Szmidt, E., & Kacprzyk, J. (2009). Ranking of intuitionistic fuzzy alternatives in a multi-criteria decision making problem. In: Proceedings of NAFIPS 2009, Cincinnati, USA, June 14–17, 2009, pp. 1-6, doi: 10.1109/NAFIPS.2009.5156417.
  40. Szmidt, E., & Kacprzyk, J. (2010). Dealing with typical values via Atanassov’s intuitionistic fuzzy sets. International Journal of General Systems, 39(5), 489–506.
  41. Szmidt, E., & Kacprzyk, J. (2011). Intuitionistic fuzzy sets – Two and three term representations in the context of a Hausdorff distance. Acta Universitatis Matthiae Belii, Series Mathematics, 19, 53–62.
  42. Szmidt, E., & Kacprzyk, J. (2012). A new approach to Principal Component Analysis for intuitionistic fuzzy data sets. Greco, S., et al. (Eds.). IPMU 2012, Part II, CCIS 298, pp. 529–538, Springer-Verlag Berlin Heidelberg.
  43. Szmidt, E., & Kacprzyk, J. (2015). Two and three term representations of intuitionistic fuzzy sets: Some conceptual and analytic aspects. Proceedings of 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), pp. 1–8.
  44. Szmidt, E., & Kacprzyk, J. (2017). A perspective on differences between Atanassov's intuitionistic fuzzy sets and interval-valued fuzzy sets. In: Torra, V., Dahlbom, V., Narukawa, Y. (Eds.). Fuzzy Sets, Rough Sets, Multisets and Clustering. Studies in Computational Intelligence, Volume 671, pp. 221–237, Springer.
  45. Szmidt, E., & Kacprzyk, J. (2022). Atanassov’s intuitionistic fuzzy sets demystified. In: Ciucci, D., Couso, I., Medina, J., Slezak, D., Petturiti, D., Bouchon-Meunier, B., & Yager, R. R. (Eds.). Information Processing and Management of Uncertainty in Knowledge-Based Systems. 19th International Conference, IPMU 2022, Milan, Italy, Proceedings, Part I, pp. 517–527. Communications in Computer and Information Science 1601, Springer.
  46. Szmidt, E., Kacprzyk, J., Atanassova, V., & Bujnowski, P. (2024). Intuitionistic fuzzy sets in group decision making – A novel approach. Notes on Intuitionistic Fuzzy Sets, 30(2), 101–112.
  47. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2020). Attribute selection for sets of data expressed by intuitionistic fuzzy sets. Proceedings of 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, pp. 1–7.
  48. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2021). Three term attribute description of Atanassov’s intuitionistic fuzzy sets as a basis of attribute selection. Proceedings of 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6.
  49. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2022). Ranking of alternatives described by Atanassov’s intuitionistic fuzzy sets – A critical review. Proceedings of the 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7.
  50. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2022). Similarity measures for Atanassov’s intuitionistic fuzzy sets: Some dilemmas and challenges. Control and Cybernetics, 51(2), 249–266.
  51. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2023). Identification of a sufficient number of the best attributes in the intuitionistic fuzzy models. Notes on Intuitionistic Fuzzy Sets, 29(2), 144–156.
  52. Szmidt, E., Kacprzyk, J., Bujnowski, P., Starczewski, J., & Siwocha, A. (2024). Ranking of alternatives described by Atanassov’s intuitionistic fuzzy sets – Reconciling some misunderstandings. Journal of Artificial Intelligence and Soft Computing Research, 14(3), 237–250.
  53. Szmidt, E., & Kukier, M. (2006). Classification of imbalanced and overlapping classes using intuitionistic fuzzy sets. Proceedings of 3rd International IEEE Conference on Intelligent Systems IEEE IS’06, London, 722–727.
  54. Szmidt, E., & Kukier, M. (2008). A new approach to classification of imbalanced classes via Atanassov’s intuitionistic fuzzy sets. In: Wang, H.-S. (Ed.). Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery. Idea Group, pp. 85–101.
  55. Szmidt, E., & Kukier, M. (2008). Atanassov’s intuitionistic fuzzy sets in classification of imbalanced and overlapping classes. In: Chountas, P., Petrounias, I., & Kacprzyk, J. (Eds.). Intelligent Techniques and Tools for Novel System Architectures. Springer, Series: Studies in Computational Intelligence, Berlin, Heidelberg, pp. 455–471.
  56. Todorova, L., & Vassilev, P. (2009). Application of K-Nearest Neighbor rule in the case of intuitionistic fuzzy sets for pattern recognition. Bioautomation, 13(4), 265–270.
  57. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
  58. Zeraatkar, S., & Afsari. F. (2021). Interval-valued fuzzy and intuitionistic fuzzy-KNN for imbalanced data classification. Expert Systems with Applications, 184, 115–510.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.