As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:Triangular norm-based intuitionistic fuzzy BE-algebras and filters

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/31/2/227-241)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/2/227-241
Title of paper: Triangular norm-based intuitionistic fuzzy BE-algebras and filters
Author(s):
Sinem Tarsuslu (Yılmaz)     0000-0001-9192-7001
Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, 33400, Tarsus, Türkiye
sinemtarsuslu@tarsus.edu.tr
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 2, pages 227–241
DOI: https://doi.org/10.7546/nifs.2025.31.2.227-241
Download:  PDF (253  Kb, File info)
Abstract: In this paper, intuitionistic fuzzy BE-algebra that a generalization of the BCK-algebra is introduced with respect to t-norms and t-conorms. The various algebraic properties of triangular norm-based intuitionistic fuzzy BE-algebras are studied in detail, and the characteristics of norm-based α-cuts are examined. Furthermore, the notion of intuitionistic fuzzy filters in the context of triangular BE-algebras is defined and analyzed. Theoretical results and properties related to these structures are discussed.
Keywords: Intuitionistic fuzzy sets, intuitionistic fuzzy BE-algebra, t-norms, intuitionistic fuzzy filter.
AMS Classification: 03E72, 08A72.
References:
  1. Ahn, S. S., Kim, Y. H., & So, K. S. (2011). Fuzzy BE-algebras. Journal of Applied Mathematics & Informatics, 29(3–4), 1049–1057.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  4. Bal, A., Çuvalcıoğlu, G., & Tuğrul, F. (2022). On some fundamental properties of α-interval valued fuzzy subgroups. Thermal Science, 26(Spec. Issue 2), 681–693.
  5. Çuvalcıoğlu, G. (2017). Some properties of t-intuitionistic fuzzy Hν-rings. Sakarya University Journal of Science, 21(6), 1182–1187.
  6. Davvaz, B., Corsini, P., & Leoreanu-Fotea, V. (2009). Atanassov’s intuitionistic (S, T)-fuzzy n-ary sub-hypergroups and their properties. Information Sciences, 179(5), 654–666.
  7. Dymek, G., & Walendziak, A. (2013). Fuzzy filters of BE-algebras. Mathematica Slovaca, 63(5), 935–946.
  8. Elnair, E. M. (2024). More results on intuitionistic fuzzy ideals of BE-algebras. European Journal of Pure and Applied Mathematics, 17(1), 426–434.
  9. Janiš, V. (2010). t-Norm based cuts of intuitionistic fuzzy sets. Information Sciences, 180(7), 1134–1137.
  10. Kim, H. S., & Kim, Y. H. (2006). On BE-algebras. Scientiae Mathematicae Japonicae Online, e-2006, 1299–1302.
  11. Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms. Springer-Science+Business Media, B.V.
  12. Menger, K. (1942). Statistical metrics. Proceedings of the National Academy of Sciences, 28(12), 535–537.
  13. Mukkamala, S. R. (2018). A Course in BE-Algebras. Springer Nature, Singapore.
  14. Parveen, P. A., & Begum, M. H. J. (2019). Intuitionistic fuzzy ideals in BE-algebras. American International Journal of Research in Science, Technology, Engineering & Mathematics, 26(1), 14–18.
  15. Rahman, S., & Saikia, H. K. (2013). Atanassov’s intuitionistic fuzzy submodules with respect to a t-norm. Soft Computing, 17, 1253–1262.
  16. Rezaei, A., & Borumand Saeid, A. (2011). On fuzzy subalgebras of BE-algebras. Afrika Matematika, 22, 115–127.
  17. Senapati, T., Bhowmik, M., & Pal. M. (2016). Triangular norm based fuzzy BG-algebras. Afrika Matematika, 27, 187–199.
  18. Tarsuslu (Yılmaz), S., & Çuvalcıoğlu, G. (2019). (T, S)-Intuitionistic fuzzy algebras. Journal of Intelligent & Fuzzy Systems, 36(1), 139–147.
  19. Xue, Z., Xiao, Y., Liu, W., Chung, H., & Li, Y. (2013). Intuitionistic fuzzy filter theory of BL-algebras. International Journal of Machine Learning and Cybernetics, 4(6), 659–669.
  20. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
  21. Zadeh, L. A. (1975). The concept of linguistic variable and its application to approximate reasoning–I. Information Sciences, 8(3), 199–249.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.