As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On OWA, Machine Learning and Big Data: The case for IFS over universes

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/30/2/113-120)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/30/2/113-120
Title of paper: On OWA, Machine Learning and Big Data: The case for IFS over universes
Author(s):
Panagiotis Chountas
School of Computer Science & Engineering, University of Westminster, 15 New Cavendish Street, London W1W 6UW, London, United Kingdom
chountp@westminster.ac.uk
Mustafa Hajmohammed
School of Computer Science & Engineering, University of Westminster, 15 New Cavendish Street, London W1W 6UW, London, United Kingdom
m.hajmohammed@westminster.ac.uk
Ismael Rhemat
School of Computer Science & Engineering, University of Westminster, 15 New Cavendish Street, London W1W 6UW, London, United Kingdom
i.rhemat@westminster.ac.uk
Presented at: Proceedings of the 27th International Conference on Intuitionistic Fuzzy Sets, 5–6 July 2024, Burgas, Bulgaria
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 2, pages 113–120
DOI: https://doi.org/10.7546/nifs.2024.30.2.113-120
Download:  PDF (1168  Kb, File info)
Abstract: This paper provides a holistic view of open-world machine learning by investigating class discovery, and class incremental learning under OWA. The challenges, principles, and limitations of current methodologies are discussed in detail. Finally, we position IFS over multiple universes as a formalism to capture the evolution in Big Data as part of incremental learning.
Keywords: Intuitionistic fuzzy sets, Big data, Incremental learning, Machine learning.
AMS Classification: 03E72, 68T05.
References:
  1. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  2. Atanassov, K. (1992). Remark on the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 51(1), 117–118.
  3. Atanassov K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg, 1999.
  4. Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning of visual features. Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149, 2018.
  5. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 1–58.
  6. Chountas, P. (2007). Representation of null values with the Aid H-IFS. Notes on Intuitionistic Fuzzy Sets, 13(1), 20–33.
  7. Chountas, P., & Atanassov, K. (2007). On intuitionistic fuzzy sets over universes with hierarchical structures. Notes on Intuitionistic Fuzzy Sets, 13(1), 52–56.
  8. Geng, C., Huang, S.-J., & Chen, S. (2020). Recent advances in open set recognition: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3614–3631.
  9. Han, K., Rebuffi, S.-A., Ehrhardt, S., Vedaldi, A., & Zisserman, A. (2021). Autonovel: Automatically discovering and learning novel visual categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10), 6767–6781.
  10. Linnebo, Ø. (2010). Pluralities and sets. Journal of Philosophy, 107(3), 144–164.
  11. Linnebo, Ø. (2013). The potential hierarchy of sets. Review of Symbolic Logic, 6(2), 205–228.
  12. Pang, G., Shen, C., Cao, L., & Van Den Hengel, A. (2021). Deep learning for anomaly detection: A review. ACM Computing Surveys (CSUR), 54(2), 1–38.
  13. Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., & Boult, T. E. (2022). Toward open set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1757–1772, 2012.
  14. Xie, J., Girshick, R., & Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. Proceedings of International Conference on Machine Learning, 478–487. PMLR.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.