As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Special types of morphisms in the category CR-IFM

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/29/4/351-364)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/29/4/351-364
Title of paper: Special types of morphisms in the category CR-IFM
Author(s):
P. K. Sharma
Post Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Chandni
Research Scholar, Lovely Professional University, Phagwara, Punjab, India
chandni16041986@gmail.com
Nitin Bharadwaj
Department of Mathematics, Lovely Professional University, Phagwara, Punjab, India
nitin.1590301@lpu.co.in
Presented at: Proceedings of the International Workshop on Intuitionistic Fuzzy Sets, 15 December 2023, Banská Bystrica, Slovakia
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 4, pages 351–364
DOI: https://doi.org/10.7546/nifs.2023.29.4.351-364
Download:  PDF (334  Kb, File info)
Abstract: The aim of this paper is to introduce two special type of morphisms, namely Retraction and Coretraction in the category (CR-IFM) of intuitionistic fuzzy modules. We obtain the condition under which a morphism in CR-IFM, that is an intuitionistic fuzzy R-homomorphism, to be a retraction or a coretraction. Then, we acquire some equivalent statements for these two morphisms. Further, we study free, projective and injective objects in CR-IFM and establish their relation with morphism in CR-IFM and retraction, coretraction.
Keywords: Intuitionistic fuzzy modules, Intuitionistic fuzzy R-homomorphism, Intuitionistic fuzzy coretraction, Intuitionistic fuzzy retraction, Intuitionistic fuzzy projective modules, Intuitionistic fuzzy injective modules
AMS Classification: 03F55, 16D90, 18A20.
References:
  1. Ameri, R., & Zahedi, M. M. (2000). Fuzzy chain complex and fuzzy homotopy. Fuzzy Sets and Systems, 112, 287–297.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg.
  4. Basnet, D. K. (2011). Topics in Intuitionistic Fuzzy Algebra. Lambert Academis Publishing, ISBN: 978-3-8443-9147-3.
  5. Biswas, R. (1989). Intuitionistic fuzzy subgroup. Mathematical Forum, X, 37–46.
  6. Cigdem, C. A., & Davvaz, B. (2014). Inverse and direct systems in the category of intuitionistic fuzzy submodules. Notes on Intuitionistic Fuzzy Sets, 20(3), 13–33.
  7. Dauns, J. (2008). Modules and Rings, Cambridge University Press, ISBN: 9780521063487.
  8. Davvaz, B., Dudek, W. A., & Jun, Y. B. (2006). Intuitionistic fuzzy Hv-submodules. Information Sciences, 176, 285–300.
  9. Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic Fuzzy Subgroups and Subrings. Honam Mathematical Journal, 25(1), 19–41.
  10. Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic Fuzzy Ideals of a Ring. Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.
  11. Isaac, P., & John, P. (2011). On Intuitionistic Fuzzy Submodules of a Module. International Journal of Mathematical Sciences and Applications, 1(3), 1447–1454.
  12. Kim, J., Lim, P. K., Lee, J. G., & Hur, K. (2017). The category of intuitionistic fuzzy sets. Annals of Fuzzy Mathematics and Informatics, 14(6), 549–562.
  13. Lee, S. J.,& Chu, J. M. (2009). Categorical properties of intuitionistic topological spaces. Communications of the Korean Mathematical Society, 24(4), 595–603.
  14. Leinster, T. (2014). Basic Category Theory. Cambridge studies in Advanced Mathematics, 143, ISBN: 978-1-107-04424-1.
  15. Mashinchi, M., & Zahedi, M. (1992). On l-fuzzy primary submodules. Fuzzy Sets and Systems, 49(2), 231–236.
  16. Negoita, C. V., & Ralescu, D. A. (1975). Applications of Fuzzy Sets and System Analysis. Springer.
  17. Pan, F. (1987). Fuzzy finitely generated modules. Fuzzy Sets and Systems, 21(1), 105–113.
  18. Pan, F. (1988). Fuzzy quotient modules. Fuzzy Sets and Systems, 28(1), 85–90.
  19. Lopez-Permouth, S. R., & Malik, D. S. (1990). On categories of fuzzy modules. Information Sciences, 52, 211–220.
  20. Sharma, P. K. (2016). On intuitionistic fuzzy representation of intuitionistic fuzzy G-modules. Annals of Fuzzy Mathematics and Informatics, 11(4), 557–569.
  21. Sharma, P. K. (2017). On Intuitionistic Fuzzy Projective And Injective Modules. JMI International Journal of Mathematical Sciences, 1–9.
  22. Sharma, P. K., & Kaur, T. (2015). Intuitionistic fuzzy G-modules. Notes on Intuitionistic Fuzzy Sets, 21(1), 6–23.
  23. Sharma, P. K., & Kaur, G. (2018). On intuitionistic fuzzy prime submodules. Notes on Intuitionistic Fuzzy Sets, 24(4), 97–112.
  24. Sharma, P. K., Chandni, & Bhardwaj, N. (2022). Category of Intuitionistic Fuzzy Modules. Mathematics, 10, 399.
  25. Sostak, A. P. (1999). Fuzzy Categories Related to Algebra and Topology. Tatra Mountains Mathematical Publications, 16, 159–185.
  26. Wyler, O. (1971). On the categories of general topology and topological algebra. Archiv der Mathematik, 22, 7–17.
  27. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
  28. Zahedi, M. M. (1993). Some results on fuzzy modules. Fuzzy Sets and Systems, 55, 355–361.
  29. Zahedi, M. M., & Ameri, R. (1994). Fuzzy exact sequence in category of fuzzy modules. The Journal of Fuzzy Mathematics, 2, 409–424.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.