Title of paper:
|
Special types of morphisms in the category CR-IFM
|
Author(s):
|
P. K. Sharma
|
Post Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
|
pksharma@davjalandhar.com
|
Chandni
|
Research Scholar, Lovely Professional University, Phagwara, Punjab, India
|
chandni16041986@gmail.com
|
Nitin Bharadwaj
|
Department of Mathematics, Lovely Professional University, Phagwara, Punjab, India
|
nitin.1590301@lpu.co.in
|
|
Presented at:
|
Proceedings of the International Workshop on Intuitionistic Fuzzy Sets, 15 December 2023, Banská Bystrica, Slovakia
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 4, pages 351–364
|
DOI:
|
https://doi.org/10.7546/nifs.2023.29.4.351-364
|
Download:
|
PDF (334 Kb, File info)
|
Abstract:
|
The aim of this paper is to introduce two special type of morphisms, namely Retraction and Coretraction in the category (CR-IFM) of intuitionistic fuzzy modules. We obtain the condition under which a morphism in CR-IFM, that is an intuitionistic fuzzy R-homomorphism, to be a retraction or a coretraction. Then, we acquire some equivalent statements for these two morphisms. Further, we study free, projective and injective objects in CR-IFM and establish their relation with morphism in CR-IFM and retraction, coretraction.
|
Keywords:
|
Intuitionistic fuzzy modules, Intuitionistic fuzzy R-homomorphism, Intuitionistic fuzzy coretraction, Intuitionistic fuzzy retraction, Intuitionistic fuzzy projective modules, Intuitionistic fuzzy injective modules
|
AMS Classification:
|
03F55, 16D90, 18A20.
|
References:
|
- Ameri, R., & Zahedi, M. M. (2000). Fuzzy chain complex and fuzzy homotopy. Fuzzy Sets and Systems, 112, 287–297.
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg.
- Basnet, D. K. (2011). Topics in Intuitionistic Fuzzy Algebra. Lambert Academis Publishing, ISBN: 978-3-8443-9147-3.
- Biswas, R. (1989). Intuitionistic fuzzy subgroup. Mathematical Forum, X, 37–46.
- Cigdem, C. A., & Davvaz, B. (2014). Inverse and direct systems in the category of intuitionistic fuzzy submodules. Notes on Intuitionistic Fuzzy Sets, 20(3), 13–33.
- Dauns, J. (2008). Modules and Rings, Cambridge University Press, ISBN: 9780521063487.
- Davvaz, B., Dudek, W. A., & Jun, Y. B. (2006). Intuitionistic fuzzy Hv-submodules. Information Sciences, 176, 285–300.
- Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic Fuzzy Subgroups and Subrings. Honam Mathematical Journal, 25(1), 19–41.
- Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic Fuzzy Ideals of a Ring. Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.
- Isaac, P., & John, P. (2011). On Intuitionistic Fuzzy Submodules of a Module. International Journal of Mathematical Sciences and Applications, 1(3), 1447–1454.
- Kim, J., Lim, P. K., Lee, J. G., & Hur, K. (2017). The category of intuitionistic fuzzy sets. Annals of Fuzzy Mathematics and Informatics, 14(6), 549–562.
- Lee, S. J.,& Chu, J. M. (2009). Categorical properties of intuitionistic topological spaces. Communications of the Korean Mathematical Society, 24(4), 595–603.
- Leinster, T. (2014). Basic Category Theory. Cambridge studies in Advanced Mathematics, 143, ISBN: 978-1-107-04424-1.
- Mashinchi, M., & Zahedi, M. (1992). On l-fuzzy primary submodules. Fuzzy Sets and Systems, 49(2), 231–236.
- Negoita, C. V., & Ralescu, D. A. (1975). Applications of Fuzzy Sets and System Analysis. Springer.
- Pan, F. (1987). Fuzzy finitely generated modules. Fuzzy Sets and Systems, 21(1), 105–113.
- Pan, F. (1988). Fuzzy quotient modules. Fuzzy Sets and Systems, 28(1), 85–90.
- Lopez-Permouth, S. R., & Malik, D. S. (1990). On categories of fuzzy modules. Information Sciences, 52, 211–220.
- Sharma, P. K. (2016). On intuitionistic fuzzy representation of intuitionistic fuzzy G-modules. Annals of Fuzzy Mathematics and Informatics, 11(4), 557–569.
- Sharma, P. K. (2017). On Intuitionistic Fuzzy Projective And Injective Modules. JMI International Journal of Mathematical Sciences, 1–9.
- Sharma, P. K., & Kaur, T. (2015). Intuitionistic fuzzy G-modules. Notes on Intuitionistic Fuzzy Sets, 21(1), 6–23.
- Sharma, P. K., & Kaur, G. (2018). On intuitionistic fuzzy prime submodules. Notes on Intuitionistic Fuzzy Sets, 24(4), 97–112.
- Sharma, P. K., Chandni, & Bhardwaj, N. (2022). Category of Intuitionistic Fuzzy Modules. Mathematics, 10, 399.
- Sostak, A. P. (1999). Fuzzy Categories Related to Algebra and Topology. Tatra Mountains Mathematical Publications, 16, 159–185.
- Wyler, O. (1971). On the categories of general topology and topological algebra. Archiv der Mathematik, 22, 7–17.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
- Zahedi, M. M. (1993). Some results on fuzzy modules. Fuzzy Sets and Systems, 55, 355–361.
- Zahedi, M. M., & Ameri, R. (1994). Fuzzy exact sequence in category of fuzzy modules. The Journal of Fuzzy Mathematics, 2, 409–424.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|