As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On intuitionistic fuzzy implications

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/23/5/7-19)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/23/5/7-19
Title of paper: On intuitionistic fuzzy implications
Author(s):
I. Bakhadach
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
Said Melliani
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
said.melliani@gmail.com
Lalla Saadia Chadli
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 5, pages 7—19
Download:  PDF (247 Kb  Kb, File info)
Abstract: In this paper we conduct a systematic algebraic study on the set I of all intuitionistic fuzzy implications. To this end, we propose a binary operation, denoted by ✱, which makes a (I, ✱) a monoid. We determine the largest subgroup K of this monoid and using its representation define a group action of K that partitions I into equivalence classes. Also we give novel way of generating newer fuzzy implications from given ones by a bijective transformations.
Keywords: Intuitionistic fuzzy implication, Group action, Bijective transformation.
AMS Classification: 03E72.
References:
  1. Atanassov, K. & Stoeva, S. (1983) Intuitionistic fuzzy sets, Proceedings Polish Symposium on Interval and Fuzzy Mathematics, Poznan, 23–26, 1983.
  2. Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. T., & Gargov, G. (1998) Elements of intuitionistic fuzzy logic, Part I, Fuzzy Sets and Systems, 95, 39–52.
  4. Cornelis, C., Deschrijver, G. & Kerre, E. E. (2002) Classification of intuitionistic fuzzy implicators: an algebraic approach, Proceedings of the 6th Joint Conference on Information Sciences, Durham, North Carolina, 105–108.
  5. Cornelis, C., Deschrijver, G. & Kerre, E. E. (2002) Intuitionistic fuzzy connectives revisited, Proceedings of IPMU’02, 1–5 July 2002, 1839–1844.
  6. Mordeson, et al (2003) Fuzzy semigroups, Springer-Verlag, Heidelberg.
  7. Szmidt, E., & Kacprzyk, J. (2001) Intuitionistic fuzzy sets in some medical applications, B. Reusch: Fuzzy Days’2001, 148–151.
  8. Szmidt, E., & Kacprzyk, J. (2004) A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning, L. Rutkowski et al. (Eds.): Proceedings of ICAISC’2004, 388–393.
  9. Szmidt, E., & Kacprzyk, J. (2001) Intuitionistic fuzzy sets in intelligent data analysis for medical diagnosis, V.N. Alexandrov et al. (Eds.): Proceedings of ICCS’2001, 263–271.
  10. Zadeh, L. A. (1973) Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Systems Man and Cybernetics, 3(1), 28–44.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.