Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 23, 2017, No. 5, 7–19

On intuitionistic fuzzy implications

I. Bakhadach, S. Melliani* and L. S. Chadli

LMACS, Laboratoire de Mathématiques Appliquées & Calcul Scientifique Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco

e-mail: said.melliani@gmail.com

* Corresponding author

Received: 26 September 2017 **Accepted:** 15 November 2017

Abstract: In this paper we conduct a systematic algebraic study on the set \mathbb{I} of all intuition-istic fuzzy implications. To this end, we propose a binary operation, denoted by *,which makes a $(\mathbb{I},*)$ a monoid.we determine the largest subgroup $\mathfrak K$ of this monoid and using its representation define a group action of $\mathfrak K$ that partitions $\mathbb I$ into equivalence classes. Also we give novel way of generating newer fuzzy implications from given ones by a bijective transformations.

Keywords: Intuitionistic fuzzy implication, Group action, Bijective transformation.

AMS Classification: 03E72.

1 Introduction

Study in intuitionistic fuzzy subsets and application of intuitionistic fuzzy control have been developed quickly since the definition of intuitionistic fuzzy sets was introduced by Atanassov in 1983. **IFSS** theory basically defies the claim that from the fact that an element x "belongs" to a given degree (say μ) to a fuzzy set A, naturally follows that x should "not belong" to A to the extent $1-\mu$, an assertion implicit in the concept of a fuzzy set. On the contrary, **IFSS** assign to each element of the universe both a degree of membership μ and one of non-membership ν such that $\mu + \nu \leq 1$, thus relaxing the enforced duality $\nu = 1 - \mu$ from fuzzy set theory. Obviously, when $\mu + \nu = 1$ for all elements of the universe, the traditional fuzzy set concept is recovered.

Technology of intuitionistic fuzzy control has been applied to many fields including medical field [7, 8, 9]. But the basic theory of intuitionistic fuzzy control is inferior to its application, especially the theory of intuitionistic fuzzy reasoning. Since Zadeh [10] introduced the compositional rule of inference (**CRI**), many researchers have take advantage of fuzzy implication operators

to represent the relation between two variables linked together by means of an if – then rule. In intuitionistic fuzzy reasoning theory, intuitionistic fuzzy implication operators play the same important role.

This paper is organized as follows. In Section 2 we propose a binary operation * on the set of all intuitionistic fuzzy implication \mathbb{I} that makes $(\mathbb{I},*)$ a monoid. This is the first work in which such a rich structure has been obtained on the entire set of intuitionistic fuzzy implications \mathbb{I} In Section 3 We characterize the largest such subgroup \mathcal{K} and, based on their representation, propose a group action of \mathcal{K} on \mathbb{I} . Clearly, this group action partitions \mathbb{I} into equivalence classes. And in Section 4 we propose a new method for the construction of new intuitionistic fuzzy implications. Finally we draw conclusions and indicate future lines of research.

2 Preliminaries

First we give the concept of intuitionistic fuzzy set defined by Atanassov and we recall some elementary definitions that we use in the sequel. Assume that X is the universe.

Definition 1 ([1, 2]). The intuitionistic fuzzy subsets (in shorts **IFSS**) defined on a non-empty set X as objects having the form

$$A = \{ \langle x, \mu(x), \nu(x) \rangle : x \in X \}$$

where the functions $\mu: X \to [0,1]$ and $\nu: X \to [0,1]$ denote the degree of membership and the degree of non-membership of each element $x \in X$ to the set A respectively, and $0 \le \mu(x) + \nu(x) \le 1$ for all $x \in X$.

For the sake of simplicity, we shall use the symbol $\langle \mu, \nu \rangle$ for the intuitionistic fuzzy subset $A = \{\langle x, \mu(x), \nu(x) \rangle : x \in X\}.$

Definition 2 ([2]). Let
$$A = \langle \mu_A, \nu_A \rangle$$
 and $B = \langle \mu_B, \nu_B \rangle$ IFSS of X . Then $A \subset B$ iff $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$ $A = B$ iff $A \subset B$ and $B \subset A$
$$A^c = \langle \nu_A, \mu_A \rangle$$

$$A \cap B = \langle \mu_A \wedge \mu_B, \nu_A \vee \nu_B \rangle$$

$$A \cup B = \langle \mu_A \vee \mu_B, \nu_A \wedge \nu_B \rangle$$

$$\Box A = \langle \mu_A, 1 - \mu_A \rangle, \, \Diamond A = \langle 1 - \nu_A, \nu_A \rangle$$

We recall from [5] that $L^* = \{\tilde{x} = (x_1, x_2)/x_1 + x_2 \le 1\}$ is a complete lattice with the order defined by

$$\tilde{x} \geq \tilde{y}$$
 if and only if $x_1 \geq y_1$ and $x_2 \leq y_2$

Now we recall the definition of intuitionistic fuzzy implication operator given by Atanassov and Gargov [3].

Figure 1: Graphical representation of the set L^*

Definition 3. An intuitionistic fuzzy implication operator (IFIO) is any $I: L^{*2} \longrightarrow L^*$ mapping satisfying the border conditions:

$$I((0,1),(0,1)) = (1,0); I((0,1),(1,0)) = (1,0)$$

 $I((1,0),(1,0)) = (1,0); I((1,0),(0,1)) = (0,1)$
and the two following conditions:

- 1) If $\tilde{x} \leq \tilde{y}$, then $\forall \tilde{z} \in L^*I(\tilde{x}, \tilde{z}) \geq I(\tilde{y}, \tilde{z})$
- 2) If $\tilde{y} \leq \tilde{z}$, then $\forall \tilde{x} \in L^*I(\tilde{x}, \tilde{y}) \leq I(\tilde{x}, \tilde{z})$

Definition 4 ([6]). *If* (X, *) *is a mathematical system such that* \forall $a, b, c \in X$, (a*b)*c = a*(b*c), then * is called associative and (X, *) is called a semigroup.

3 Monoid structure on the set of all intuitionistic fuzzy implications

Let \mathbb{I} be the set of all intuitionistic fuzzy implications. In this section, we begin by proposing a binary operation * on the set \mathbb{I} of all intuitionistic fuzzy implications and show that $(\mathbb{I},*)$ forms a monoid and discuss the properties preserved under this operation.

Definition 5. For any two intuitionistic fuzzy implications I, J we define I * J: $L^{*2} \longrightarrow L^*$ as $(I * J)(\tilde{x}, \tilde{y}) = I(\tilde{x}, J(\tilde{x}, \tilde{y})), \tilde{x}, \tilde{y} \in L^*$.

The following result shows that I * J is, indeed, an intuitionistic fuzzy implication.

Theorem 1. I * J is an intuitionistic fuzzy implication, i.e., $I * J \in \mathbb{I}$.

Proof. (i) Let $\tilde{x_1}, \tilde{x_2}, \tilde{y} \in L^*$ be such that $\tilde{x_1} \geq \tilde{x_2}$. Then $J(\tilde{x_1}, \tilde{y}) \leq J(\tilde{x_2}, \tilde{y})$.

Then
$$(I * J)(\tilde{x_1}, \tilde{y}) = I(\tilde{x_1}, J(\tilde{x_1}, \tilde{y})) \le I(\tilde{x_2}, J(\tilde{x_2}, \tilde{y})) = (I * J)(\tilde{x_2}, \tilde{y}).$$

Then I * J is decreasing for the first variable. Similarly one can show that I * J is increasing in the second variable.

(ii)
$$(I*J)(\tilde{0},\tilde{0}) = I(\tilde{0},J(\tilde{0},\tilde{0})) = I(\tilde{0},\tilde{1}) = \tilde{1}, (I*J)(\tilde{1},\tilde{1}) = I(\tilde{1},J(\tilde{1},\tilde{1})) = I(\tilde{1},\tilde{1}) = \tilde{1}, (I*J)(\tilde{1},\tilde{0}) = I(\tilde{1},J(\tilde{1},\tilde{0})) = I(\tilde{1},\tilde{0}) = \tilde{0}.$$

Theorem 2. $(\mathbb{I}, *)$ forms a monoid, whose identity element is given by

$$I_D(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & if \qquad \tilde{x} = \tilde{0} \\ \tilde{y} & if \qquad \tilde{x} \neq \tilde{0} \end{cases}$$

Proof. From the previous theorem * is a binary closed operation on the set \mathbb{I} . For associativity of *, let $I, J, K \in \mathbb{I}$ and $\tilde{x}, \tilde{y} \in L^*$. Then

$$\begin{array}{rcl} (I*(J*K))(\tilde{x},\tilde{y}) & = & I(\tilde{x},(J*K)(\tilde{x},\tilde{y})) \\ & = & I(\tilde{x},(J(\tilde{x},K(\tilde{x},\tilde{y}))) \\ & = & (I*J)(\tilde{x},K(\tilde{x},\tilde{y})) \\ & = & ((I*J)*K)(\tilde{x},\tilde{y}) \end{array}$$

Further,

$$(I * I_D)(\tilde{x}, \tilde{y}) = I(\tilde{x}, I_D(\tilde{x}, \tilde{y}))$$

$$= \begin{cases} \tilde{1} & if & \tilde{x} = \tilde{0} \\ I(\tilde{x}, \tilde{y}) & if & \tilde{x} \neq \tilde{0} \end{cases}$$

$$= I(\tilde{x}, \tilde{y})$$

Similarly $I_D * I = I$ then I_D becomes the identity element in \mathbb{I} .

Remark 1. $(\mathbb{I}, *)$ is not a group. Indeed, take a

$$I_1(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{y} & if & \tilde{x} = \tilde{1} \\ \tilde{1} & otherwise \end{cases}$$

and we have $I * I_1 = I_1$ for all $I \in \mathbb{I}$. Thus there does not exist any $J \in \mathbb{I}$ such that $J * I_1 = I_D$.

Lemma 1. Let $I \in \mathbb{I}$; then I is invertible w.r.t * if and only if there exists a unique $J \in \mathbb{I}$ such that for any $\tilde{x}, \tilde{y} \in L^*$ with $\tilde{x} \neq \tilde{0}$, $I(\tilde{x}, J(\tilde{x}, \tilde{y})) = \tilde{y} = J(\tilde{x}, I(\tilde{x}, \tilde{y}))$

Proof. Let I be an invertible element w.r.t *, i.e., there exists a unique $J \in \mathbb{I}$ such that $I * J = I_D = J * I$. In other words,

$$I(\tilde{x}, J(\tilde{x}, \tilde{y})) = I_D(\tilde{x}, \tilde{y}) = J(\tilde{x}, I(\tilde{x}, \tilde{y})), \, \tilde{x}, \, \tilde{y} \in L^*.$$

But for $\tilde{x} \neq \tilde{0}$ we have $I_D(\tilde{x}, \tilde{y}) = \tilde{y}$ thus for $\tilde{x} \neq \tilde{0}$, $I(\tilde{x}, J(\tilde{x}, \tilde{y})) = \tilde{y} = J(\tilde{x}, I(\tilde{x}, \tilde{y}))$.

Conversely, assume that there exists a unique $J \in \mathbb{I}$ such that for $\tilde{x} \neq \tilde{0}$ $I(\tilde{x}, J(\tilde{x}, \tilde{y})) = I_D(\tilde{x}, \tilde{y}) = J(\tilde{x}, I(\tilde{x}, \tilde{y}))$.

Since $I, J \in \mathbb{I}$ and $I * J, J * I \in \mathbb{I}$ we have $I(\tilde{x}, J(\tilde{x}, \tilde{y})) = I_D(\tilde{x}, \tilde{y}) = J(\tilde{x}, I(\tilde{x}, \tilde{y}))$. Then I is invertible w.r.t *.

Theorem 3 ([4]). A function $\varphi: L^* \longrightarrow L^*$ is a continuous increasing bijection if, and only if, there exists a continuous increasing bijection $\lambda: [0,1] \longrightarrow [0,1]$ such that $\varphi(x) = (\lambda(x_1), 1 - \lambda(1-x_2))$.

Theorem 4. The solutions of $I(\tilde{x}, J(\tilde{x}, \tilde{y})) = \tilde{y} = J(\tilde{x}, I(\tilde{x}, \tilde{y}))$ are of the forms $I(\tilde{x}, \tilde{y}) = \varphi(\tilde{y})$ and $J(\tilde{x}, \tilde{y}) = \varphi^{-1}(\tilde{y})$ for some continuous increasing bijection φ

Proof. Let I and $J \in \mathbb{I}$ such that $I(\tilde{x},J(\tilde{x},\tilde{y})) = \tilde{y} = J(\tilde{x},I(\tilde{x},\tilde{y}))$ for all $\tilde{x} \neq \tilde{0}$ and $\tilde{y} \in L^*$. Let $\tilde{x} \neq \tilde{0}$ be fixed arbitrary and define two functions $\varphi_{\tilde{x_0}},\psi_{\tilde{x_0}}:L^* \longrightarrow L^*$ as $\varphi_{\tilde{x_0}}(\tilde{y}) = I(\tilde{x_0},\tilde{y})$ and $\psi_{\tilde{x_0}}(\tilde{y}) = J(\tilde{x_0},\tilde{y})$. Clearly, both $\varphi_{\tilde{x_0}},\psi_{\tilde{x_0}}$ are increasing function on L^* . Then $I(\tilde{x_0},J(\tilde{x_0},\tilde{y})) = \varphi_{\tilde{x_0}}(\psi_{\tilde{x_0}}(\tilde{y})) = (\varphi_{\tilde{x_0}} \circ \psi_{\tilde{x_0}})(\tilde{y}) = \tilde{y}$ for all $\tilde{y} \in L^*$. Similarly, $J(\tilde{x_0},I(\tilde{x_0},\tilde{y})) = \psi_{\tilde{x_0}}(\varphi_{\tilde{x_0}}(\tilde{y})) = (\psi_{\tilde{x_0}} \circ \varphi_{\tilde{x_0}})(\tilde{y}) = \tilde{y}$ for every $\tilde{y} \in L^*$. Thus $\psi_{\tilde{x_0}} = \varphi_{\tilde{x_0}}^{-1}$ and $\psi_{\tilde{x_0}}$ is a bijection. Hence $\psi_{\tilde{x_0}}$ increasing bijection on L^* for every $\tilde{x_0} \neq \tilde{0}$.

Since $\tilde{x_0}$ is chosen arbitrarily, $\psi_{\tilde{x}} = \varphi_{\tilde{x}}^{-1}$ for all $\tilde{x} \neq \tilde{0}$ Thus for $\tilde{x} \neq \tilde{0}$ $I(\tilde{x}, \tilde{y}) = \psi_{\tilde{x}}(\tilde{y})$ and $J(\tilde{x}, \tilde{y}) = \psi_{\tilde{x}}^{-1}(\tilde{y})$.

Let $\tilde{x_1}, \tilde{x_2}$ not null such that $\tilde{x_1} \leq \tilde{x_2}$. Then $I(\tilde{x_1}, \tilde{y}) \leq I(\tilde{x_2}, \tilde{y})$ implies that $\psi_{\tilde{x_1}}(\tilde{y}) \leq \psi_{\tilde{x_2}}(\tilde{y})$ and $\psi_{\tilde{x_1}}^{-1}(\tilde{y}) \leq \psi_{\tilde{x_2}}^{-1}(\tilde{y})$ for all $\tilde{y} \in L^*$. And we have

$$\begin{array}{ll} \psi_{\tilde{x_1}}^{-1} \leq \psi_{\tilde{x_2}}^{-1} & \Longrightarrow & \psi_{\tilde{x_1}} \circ \psi_{\tilde{x_1}}^{-1} \leq \psi_{\tilde{x_1}} \circ \psi_{\tilde{x_2}}^{-1} \\ & \Longrightarrow & \operatorname{id} \leq \psi_{\tilde{x_1}} \circ \psi_{\tilde{x_2}}^{-1} \\ & \Longrightarrow & \operatorname{id} \leq \psi_{\tilde{x_1}} \circ \psi_{\tilde{x_2}}^{-1} \leq \psi_{\tilde{x_2}} \circ \psi_{\tilde{x_2}}^{-1} \\ & \Longrightarrow & \operatorname{id} \leq \psi_{\tilde{x_1}} \circ \psi_{\tilde{x_2}}^{-1} \leq \operatorname{id} \end{array}$$

Hence $\psi_{\tilde{x_1}} \circ \psi_{\tilde{x_2}}^{-1} \equiv \operatorname{id}$ i.e $\psi_{\tilde{x_1}}(\tilde{y}) = \psi_{\tilde{x_2}}(\tilde{y})$ for all $\tilde{y} \in L^*$ Since $\tilde{x_1}$ and $\tilde{x_1}$ are arbitrarily chosen $\psi_{\tilde{x_1}} \equiv \psi_{\tilde{x_2}}$. Thus $I(\tilde{x}, \tilde{y}) = \psi(\tilde{y})$ and $J(\tilde{x}, \tilde{y}) = \psi^{-1}(\tilde{y})$ for some increasing bijection on L^* . \square

Then from the obvious theorems we have the following result

Theorem 5. $I \in \mathbb{I}$ is invertible w.r.t * if and only if

$$I(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & if \quad \tilde{x} = \tilde{0} \\ \varphi(\tilde{y}) & otherwise \end{cases}$$

where the function $\varphi: L^* \longrightarrow L^*$ is an increasing bijection

Let K the largest subgroup of the monoid I

Now we propose yet another new generating method of intuitionistic fuzzy implications from intuitionistic fuzzy implications and show that this method imposes a semigroup structure on the set \mathbb{I} .

4 Semigroup structure on \mathbb{I}

Definition 6. Let $I, J \in I$. Define $I \rhd J : L^{*2} \longrightarrow L^*$ as follows: $(I \rhd J)(\tilde{x}, \tilde{y}) = I(J(\tilde{1}, \tilde{x}), J(\tilde{x}, \tilde{y})), \tilde{x}, \tilde{y} \in L^*$.

Theorem 6. We have $I \triangleright J$ is an intuitionistic fuzzy implication. i.e., $I \triangleright J \in \mathbb{I}$.

Proof. Let $I, J \in \mathbb{I}$ and $\tilde{x_1}, \tilde{x_2}, \tilde{y} \in L^*$.

Let $\tilde{x_1} \leq \tilde{x_2}$. Then $J(\tilde{x_1}, \tilde{y}) \geq J(\tilde{x_2}, \tilde{y})$ and $J(1, \tilde{x_1}) \leq J(1, \tilde{x_2})$

$$(I \rhd J)(\tilde{x_1}, \tilde{y}) = I(J(\tilde{1}, \tilde{x_1}), J(\tilde{x_1}, \tilde{y})) \ge I(J(\tilde{1}, \tilde{x_1}), J(\tilde{x_2}, \tilde{y}))$$

$$\ge I(J(\tilde{1}, \tilde{x_2}), J(\tilde{x_2}, \tilde{y})) = (I \rhd J)(\tilde{x_2}, \tilde{y})$$

Thus \triangleright is decreasing in the first variable. Similarly, one can show that \triangleright is increasing in the second variable. Now we have

$$\begin{split} (I\rhd J)(\tilde{0},\tilde{0}) &= I(J(\tilde{1},\tilde{0}),J(\tilde{0},\tilde{0})) = I(\tilde{0},\tilde{1}) = \tilde{1}.\\ (I\rhd J)(\tilde{1},\tilde{1}) &= I(J(\tilde{1},\tilde{1}),J(\tilde{1},\tilde{1})) = I(\tilde{1},\tilde{1}) = \tilde{1}\\ (I\rhd J)(\tilde{1},\tilde{0}) &= I(J(\tilde{1},\tilde{1}),J(\tilde{1},\tilde{0})) = I(\tilde{1},\tilde{0}) = \tilde{0} \end{split}$$

Hence $I \triangleright J$ is an intuitionistic fuzzy implication.

Theorem 7. $(\mathbb{I}, \triangleright)$ *is a semigroup.*

Proof. from the obvious theorem \triangleright is a binary operation on \mathbb{I} . Then it is enough to show that \triangleright is associative in \mathbf{I} . Let $I, J, T \in \mathbb{I}$ and $\tilde{x}, \tilde{y} \in L^*$.

We have

$$\begin{split} (I\rhd(J\rhd T))(\tilde{x},\tilde{y}) &= I((J\rhd T)(\tilde{1},\tilde{x}),(J\rhd T)(\tilde{x},\tilde{y})) \\ &= I(J(T(\tilde{1},\tilde{1}),T(\tilde{1},\tilde{x})),J(T(\tilde{1},\tilde{x}),T(\tilde{x},\tilde{y}))) \\ &= I(J(\tilde{1},T(\tilde{1},\tilde{x})),J(T(\tilde{1},\tilde{x}),T(\tilde{x},\tilde{y}))) \\ and,((I\rhd J)\rhd T)(\tilde{x},\tilde{y}) &= (I\rhd J)(T(\tilde{1},\tilde{x}),T(\tilde{x},\tilde{y})) \\ &= I(J(\tilde{1},T(\tilde{1},\tilde{x})),J(T(\tilde{1},\tilde{x}),T(\tilde{x},\tilde{y}))). \end{split}$$

Then \triangleright is associative in \mathbb{I} and $(\mathbb{I}, \triangleright)$ is a semigroup.

Theorem 8. Let $I, J \in \mathcal{K}$. Then $I \triangleright J = I * J$.

Proof. Let $I, J \in \mathcal{K}$ i.e., for some $\varphi, \psi \in \Theta$,

$$I(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & if \quad \tilde{x} = \tilde{0} \\ \varphi(\tilde{y}) & otherwise \end{cases}$$
 and
$$J(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & if \quad \tilde{x} = \tilde{0} \\ \psi(\tilde{y}) & otherwise \end{cases}$$

Now we have

$$\begin{split} (I\rhd J)(\tilde{x},\tilde{y}) &=& I(J(\tilde{1},\tilde{x}),J(\tilde{x},\tilde{y})) \\ &=& I(\psi(\tilde{x}),J(\tilde{x},\tilde{y})) = \begin{cases} \tilde{1} & if & \tilde{x}=\tilde{0} \\ \varphi(\psi(\tilde{y})) & otherwise \end{cases} \end{split}$$

and
$$(I*J)(\tilde{x},\tilde{y})=I(\tilde{x},J(\tilde{x},\tilde{y}))= \begin{cases} \tilde{1} & if \quad \tilde{x}=\tilde{0} \\ \varphi(\psi(\tilde{y})) & otherwise \end{cases}$$
 Hence $I\rhd J=I*J$

Theorem 9. For all $I \in \mathbb{I}T \in \mathcal{K}, T*(I \rhd T^{-1}) = (T*I) \rhd T^{-1}$

$$\textit{Proof.} \ \, \text{Let} \, I \in \mathbb{I} \, \text{and} \, T \in \mathcal{K} \, \text{we know that} \, T(\tilde{x},\tilde{y}) = \begin{cases} \tilde{1} & if \quad \tilde{x} = \tilde{0} \\ \varphi(\tilde{y}) & otherwise \end{cases}$$

for some $\varphi \in \Theta$. Also T^{-1} will be given by

$$T^{-1}(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & if \quad \tilde{x} = \tilde{0} \\ \varphi^{-1}(\tilde{y}) & otherwise \end{cases}$$

if $\tilde{x}=\tilde{0}$. Then $(T*(I\rhd T^{-1}))(\tilde{0},\tilde{y})=\tilde{1}=((T*I)\rhd T^{-1})(\tilde{0},\tilde{y})$ if $\tilde{x}\neq\tilde{0}$. Then

$$\begin{array}{lcl} (T*(I\rhd T^{-1}))(\tilde{x},\tilde{y}) & = & T(\tilde{x},(I\rhd T^{-1})(\tilde{x},\tilde{y})) \\ & = & T(\tilde{x},I(T^{-1}(\tilde{1},\tilde{x}),T^{-1}(\tilde{x},\tilde{y}))) \\ & = & \varphi(I(\varphi^{-1}(\tilde{x}),\varphi^{-1}(\tilde{y}))) \end{array}$$

and

$$\begin{array}{lcl} ((T\rhd I)*T^{-1})(\tilde{x},\tilde{y}) & = & (T*I)(T^{-1}(\tilde{1},\tilde{x}),T^{-1}(\tilde{x},\tilde{y})) \\ & = & T(T^{-1}(\tilde{1},\tilde{x}),I(T^{-1}(\tilde{1},\tilde{x}),T^{-1}(\tilde{x},\tilde{y}))) \\ & = & T(\varphi(\tilde{x}),I(\varphi^{-1}(\tilde{x}),\varphi^{-1}(\tilde{y}))) \\ & = & \varphi(I(\varphi^{-1}(\tilde{x}),\varphi^{-1}(\tilde{y}))) \end{array}$$

Hence we have proved that $(T*(I \rhd T^{-1}))(\tilde{x}, \tilde{y}) = ((T*I) \rhd T^{-1})(\tilde{x}, \tilde{y})$ for all $\tilde{x}, \tilde{y} \in L^*$. \square

Group action of $\mathcal K$ on $\mathbb I$ 5

In this section we define the group action of K on I. for that we first show some result that we need in the sequel.

Theorem 10. The groups $(\mathcal{K}, *)$, (Θ, \circ) are isomorphic to each other

$$\begin{aligned} \textit{Proof.} \ \ \text{Let} \ f : \Theta \longrightarrow \mathcal{K} \ \text{defined by} \ f(\varphi) &= I \ \text{where} \\ I(\tilde{x},\tilde{y}) &= \begin{cases} \tilde{1} & if & \tilde{x} = \tilde{0} \\ \varphi(\tilde{y}) & otherwise \end{cases} \end{aligned}$$

It is easy to see that the map f is one and onto. Let $\varphi_1, \varphi_2 \in \theta$ and $f(\varphi_1) = I_1, f(\varphi_2) = I_2$

Where
$$I_i(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & if \quad \tilde{x} = \tilde{0} \\ \varphi_i(\tilde{y}) & otherwise \end{cases}$$

Now we have:

$$(f(\varphi_1) * f(\varphi_2))(\tilde{x}, \tilde{y}) = (I_1 * I_2)(\tilde{x}, \tilde{y})$$

$$= I_1)(\tilde{x}, I_2(\tilde{x}, \tilde{y}))$$

$$= \begin{cases} \tilde{1} & \text{if } \tilde{x} = \tilde{0} \\ \varphi_1(\varphi_2(\tilde{y})) & \text{otherwise} \end{cases}$$

$$= f(\varphi_1 \circ \varphi_2)(\tilde{x}, \tilde{y})$$

Thus f is an isomorphism.

Definition 7. Let (G, *) be a group and H be a nonempty set. A function $\bullet : G \times H \longrightarrow H$ is called a group action if, for all $g_1, g_2 \in G$ and $h \in H$, \bullet satisfies the following two conditions:

1)
$$q_1 \bullet (q_2 \bullet h) = (q_1 * q_2) \bullet h$$

2) $e \bullet h = h$ where e is the identity of G.

Definition 8. Let $\bullet : \mathcal{K} \times I \longrightarrow I$ be a map defined by $(T, I) \longrightarrow T \bullet I = T * I * T^{-1}$.

Lemma 2. The function \bullet is a group action of K on \mathbb{I}

Proof. Let $T_1, T_2 \in \mathcal{K}$ and $I \in \mathbb{I}$.

1)

$$T_{1} \bullet (T_{2} \bullet I) = T_{1} * (T_{2} \bullet I) * T_{1}^{-1}$$

$$= T_{1} * T_{2} * I * T_{2}^{-1} * T_{1}^{-1}$$

$$= (T_{1} * T_{2}) * I * (T_{1} * T_{2})^{-1}$$

$$= (T_{1} * T_{2}) \bullet I.$$

2) Similarly, $I_D \bullet I = I_D * I * I_D^{-1} = I$, since I_D is the identity of $(\mathbb{I}, *)$. Thus \bullet is a group action of \mathcal{K} on \mathbb{I} .

Definition 9. Let $I, J \in \mathbb{I}$. Define $I \backsim J \Leftrightarrow J = T \bullet I$ for some $T \in \mathcal{K}$. In other words, $I \backsim J \Leftrightarrow J = T * I * T^{-1}$ for some $T \in \mathcal{K}$.

Lemma 3. The relation \backsim is an equivalence relation and it partitions the set \mathbb{L} .

Proof. We have for $I, J \in \mathbb{I}$

1 $I \sim I$ because $I = I_D * I * I_D^{-1}$

2 And we have $I \backsim J \Rightarrow J = T * I * T^{-1}$ this implies that $I = T^{-1} * I * T$ then we take $H = T^{-1}$. Hence $J \backsim I$.

3 for the transitivity let $I \backsim J$ and $J \backsim K$ we can easily show that $I \backsim K$.

Remark 2. Let $I \in \mathbb{I}$. Then the equivalence class containing I will be of the form $[I] = \{J \in \mathbb{I} | J = T * I * T^{-1} \text{ for some } T \in \mathcal{K}\}.$

Since any $T \in \mathcal{K}$ is of the form

$$T(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & if \quad \tilde{x} = \tilde{0} \\ \varphi(\tilde{y}) & otherwise \end{cases}$$

for some $\varphi \in \theta$, we have that, if $J \in [I]$, then $J(\tilde{x}, \tilde{y}) = \varphi(I(\tilde{x}, \varphi^{-1}(\tilde{y})))$ for all $\tilde{x}, \tilde{y} \in L^*$.

Now we define a new group action of K on I.

Theorem 11. Let $\sqcup : \mathcal{K} \times \mathbb{I} \longrightarrow \mathbb{I}$ be defined by $T \sqcup I = T * I$, $T \in \mathcal{K}, I \in \mathbb{I}$. The function \sqcup is a left group action of \mathcal{K} on \mathbb{I} .

Proof. i) Let $T_1, T_2 \in \mathcal{K}$ and $I \in \mathbb{I}$. Then

$$T_1 \sqcup (T_2 \sqcup I) = T_1 * (T_2 \sqcup I)$$

= $T_1 * (T_2 * I)$
= $(T_1 * T_2) * I$
= $(T_1 * T_2) \sqcup I$

ii) $I_D \sqcup I = I_D * I = I$ Thus \sqcup is a left group action of $\mathcal K$ on $\mathbb I$

6 Bijective transformations of intuitionistic fuzzy implications

Definition 10. Let $I: L^{*2} \longrightarrow L^*$ be a function and $\varphi, \psi, \mu \in \Theta$. We define the bijective transformation $J_{\varphi,\psi,\mu}: L^{*2} \longrightarrow L^*$ of I as follows:

$$J_{\varphi,\psi,\mu}(\tilde{x},\tilde{y}) = \varphi(I(\psi(\tilde{x}),\mu(\tilde{y})) \tag{1}$$

The following result shows that any bijective transformation of the form (1) can also generate intuitionistic fuzzy implications from intuitionistic fuzzy implications.

Theorem 12. Let $I: L^{*2} \longrightarrow L^*$ be a function and $\varphi, \psi, \mu \in \Theta$. Let $J_{\varphi,\psi,\mu}$ be defined as in (1). Then the following statements are equivalent:

- i) I is an intuitionistic fuzzy implication
- ii) $J_{\varphi,\psi,\mu}$ is an intuitionistic fuzzy implication

Proof. \Rightarrow) Let $\tilde{x_1}, \tilde{x_2}, \tilde{y} \in L^*$ such that $\tilde{x_1} \leq \tilde{x_2}$. Then we have $I(\tilde{x_2}, \tilde{y}) \leq I(\tilde{x_1}, \tilde{y})$ using the fact that $\varphi, \psi, \mu \in \Theta$ we defined $\varphi(I(\psi(\tilde{x_2}), \mu(\tilde{y})) \leq \varphi(I(\psi(\tilde{x_1}), \mu(\tilde{y}))$. This implies that $J_{\varphi,\psi,\mu}$ is decreasing for the first variable.

Similarly for the second variable.

And we have
$$J_{\varphi,\psi,\mu}(\tilde{0},\tilde{1})=\varphi(I(\psi(\tilde{0}),\mu(\tilde{1}))=\varphi(I(\tilde{0},\tilde{1}))=\varphi(\tilde{1})=\tilde{1},$$
 $J_{\varphi,\psi,\mu}(\tilde{1},\tilde{0})=\varphi(I(\psi(\tilde{1}),\mu(\tilde{0}))=\varphi(I(\tilde{1},\tilde{0}))=\varphi(\tilde{0})=\tilde{0},$ $J_{\varphi,\psi,\mu}(\tilde{1},\tilde{1})=\varphi(I(\psi(\tilde{1}),\mu(\tilde{1}))=\varphi(I(\tilde{1},\tilde{1}))=\varphi(\tilde{1})=\tilde{1}.$

Hence $J_{\varphi,\psi,\mu}$ is an intuitionistic fuzzy implication.

Conversely, let $J_{\varphi,\psi,\mu}$ an intuitionistic fuzzy implication. Then for $\tilde{x_1}, \tilde{x_2}, \tilde{y} \in L^*$ such that $\tilde{x_1} \leq \tilde{x_2}$.

We have $J_{\varphi,\psi,\mu}(\tilde{x_2},\tilde{y}) \leq J_{\varphi,\psi,\mu}(\tilde{x_1},\tilde{y})$

$$\Longrightarrow \varphi(I(\psi(\tilde{x_2}), \mu(\tilde{y})) \le \varphi(I(\psi(\tilde{x_1}), \mu(\tilde{y})))$$
 for some $\varphi, \psi, \mu \in \Theta$

 $\Longrightarrow I(\psi(\tilde{x}_2), \mu(\tilde{y}) \leq I(\psi(\tilde{x}_1), \mu(\tilde{y}))$ then I is a decreasing function for the first variable because $\varphi, \psi, \mu \in \Theta$. Similarly, I is increasing for the second variable.

Now we have $J_{\varphi,\psi,\mu}(\tilde{0},\tilde{1})=\tilde{1}=\varphi(I(\psi(\tilde{0}),\mu(\tilde{1}))$ this implies that $\varphi(I(\tilde{0},\tilde{1}))=\tilde{1}$. Hence $I(\tilde{0},\tilde{1})=\tilde{1}$ because $\varphi(\tilde{1})=\tilde{1}$ $\forall \varphi\in\theta$ $J_{\varphi,\psi,\mu}(\tilde{1},\tilde{1})=\tilde{1}=\varphi(I(\psi(\tilde{1}),\mu(\tilde{1})) \text{ this implies that } \varphi(I(\tilde{1},\tilde{1}))=\tilde{1}. \text{ Hence } I(\tilde{1},\tilde{1})=\tilde{1}$ $J_{\varphi,\psi,\mu}(\tilde{1},\tilde{0})=\tilde{0}=\varphi(I(\psi(\tilde{1}),\mu(\tilde{0})) \text{ this implies that } \varphi(I(\tilde{1},\tilde{0}))=\tilde{0}. \text{ Hence } I(\tilde{1},\tilde{0})=\tilde{0}.$

From the obvious Theorem, it follows that one can always obtain intuitionistic fuzzy implications from given an intuitionistic fuzzy implication using (1).

Now, given $I, J \in \mathbb{I}$ we define

$$I_{\sim_{\varphi,\psi,\mu}}J \Longleftrightarrow J = I_{\varphi,\psi,\mu} \tag{2}$$

for some $\varphi, \psi, \mu \in \Theta$. It can be easily seen that $\sim_{\varphi,\psi,\mu}$ is an equivalence relation, if $[I]_{\sim_{\varphi,\psi,\mu}}$ denotes the equivalence class of fuzzy implications containing I w.r.t. (2), then

$$\begin{split} [I]_{\sim_{\varphi,\psi,\mu}} &= & \{J \in \mathbb{I} | J_{\sim_{\varphi,\psi,\mu}} I \} \\ &= & \{J \in \mathbb{I} | J(\tilde{x},\tilde{y}) = \varphi(I(\psi(\tilde{x}),\mu(\tilde{y}))) for some \varphi, \psi, \mu \in \Theta \} \\ &= & \{\varphi(I(\psi(\tilde{x}),\mu(\tilde{y}))) | \varphi, \psi, \mu \in \Theta \}. \end{split}$$

Now we propose two functions from $\mathcal{K} \times \mathbb{I} \longrightarrow \mathbb{I}$. One of these turns out to be a group action of \mathcal{K} on \mathbb{I} , while the other is an anti-group action.

Definition 11. Let $\Diamond : \mathbb{I} \times \mathcal{K} \longrightarrow \mathbb{I}$ be defined by $I \Diamond T = I * T$.

Theorem 13. \Diamond *is a right group action of* \mathcal{K} *on* \mathbb{I} .

Proof. Let $I \in \mathbb{I}$ and $T_1, T_2 \in \mathcal{K}$. $(I \lozenge T_1) \lozenge T_2 = (I * T_1) \lozenge T_2 = I * (T_1 * T_2) = I \lozenge (T_1 * T_2).$ $I \lozenge T_D = I * I_D = I$ for all $I \in \mathbb{I}$. Thus \lozenge is a right group action.

Definition 12. Define \sim_{\Diamond} on \mathbb{I} by $I \sim_{\Diamond} J \iff J = I \lozenge T = I * T$ for some $T \in \mathcal{K}$.

It is easy to verify that \sim_{\Diamond} is an equivalence relation.

Remark 3. Let $I \in \mathbb{I}$. If $[I]_{\Diamond}$ denotes the equivalence class containing I, then

$$\begin{split} [I]_{\Diamond} &= \{J \in \mathbb{I} | J_{\sim_{\Diamond}} I \} \\ &= \{J \in \mathbb{I} | J = I * T \text{ for some } T \in \mathcal{K} \} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = I(\tilde{x}, T(\tilde{x}, \tilde{y})) \text{ for some } T \in \mathcal{K} \} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = I(\tilde{x}, \varphi(\tilde{y})) \text{ for some } \varphi \in \Theta \} \\ &= \{I(\tilde{x}, \varphi(\tilde{y})) \text{ for some } \varphi \in \Theta \}. \end{split}$$

Definition 13. (See [6]) Let (G, *) be a group with identity e and S being a nonempty set. A map $\circ: G \times S \longrightarrow S$ is called anti-group action if for all $g_1, g_2 \in G, s \in S$ the map \circ satisfies the following:

(i)
$$g_1 \circ (g_2 \circ s) = (g_2 \circ g_1) \circ s$$
.

(ii) $e \circ s = s$.

Theorem 14. Let $\Box : \mathcal{K} \times \mathbb{I} \longrightarrow \mathbb{I}$ be defined by $T \supset I = (I \rhd T) * T^{-1}$, $T \in \mathcal{K}$, $I \in \mathbb{I}$. Then \Box is an anti-group action of \mathcal{K} on \mathbb{I} .

Proof. i) Let $I \in \mathbb{I}$ and $T_1, T_2 \in \mathcal{K}$. Then

$$T_1 \sqsupset (T_2 \sqsupset I) = T_1(\sqsupset (I \rhd T_2) * T_2^{-1})$$

= $((I \rhd T_2) * T_2^{-1} \rhd T_1) * T_1^{-1}$

Since $T_1, T_2 \in \mathcal{K}$. Then T_1, T_2 are of the following form

$$T_i(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & if \quad \tilde{x} = \tilde{0} \\ \varphi_i(\tilde{y}) & otherwise \end{cases}$$

i=1,2 for some $\varphi_i\in\theta$, if $\tilde{x}=\tilde{0}$. Then

$$(T_{1} \supset (T_{2} \supset I))(\tilde{x}, \tilde{y}) = = ((I \rhd T_{2}) * T_{2}^{-1} \rhd T_{1}) * T_{1}^{-1})(\tilde{x}, \tilde{y})$$

$$= ((I \rhd T_{2}) * T_{2}^{-1} \rhd T_{1})(\tilde{x}, T_{1}^{-1}(\tilde{x}, \tilde{y}))$$

$$= ((I \rhd T_{2}) * T_{2}^{-1} \rhd T_{1})(\tilde{x}, \varphi_{1}^{-1}(\tilde{y})))$$

$$= ((I \rhd T_{2}) * T_{2}^{-1})(T_{1}(\tilde{1}, \tilde{y}), T_{1}(\tilde{x}, \varphi_{1}^{-1}(\tilde{y})))$$

$$= ((I \rhd T_{2}) * T_{2}^{-1})(\varphi_{1}(x), \tilde{y}))$$

$$= ((I \rhd T_{2})(\varphi_{1}(x), T_{2}^{-1}(\varphi_{1}(\tilde{x}), \tilde{y})))$$

$$= (I \rhd T_{2})(\varphi_{1}(\tilde{x}), \varphi_{2}^{-1}(\tilde{y}))$$

$$= I(T_{2}(\tilde{1}, \varphi_{1}(\tilde{x})), T_{2}(\varphi_{1}(\tilde{x}), \varphi_{2}^{-1}(\tilde{y})))$$

$$= I(\varphi_{2}(\varphi_{1}(\tilde{x})), \tilde{y}),$$

While

$$((T_{2} * T_{1}) \supset I)(\tilde{x}, \tilde{y}) = (I \rhd (T_{2} * T_{1}) * (T_{2} * T_{1})^{-1})(\tilde{x}, \tilde{y})$$

$$= (I \rhd (T_{2} * T_{1}) * (T_{1}^{-1} * T_{2}^{-1}))(\tilde{x}, \tilde{y})$$

$$= (I \rhd (T_{2} * T_{1}) * T_{1}^{-1})(\tilde{x}, \varphi_{2}^{-1}(\tilde{y}))$$

$$= (I \rhd (T_{2} * T_{1})(\tilde{x}, \varphi_{1}^{-1}(\varphi_{2}^{-1}(\tilde{y})))$$

$$= I((T_{2} * T_{1})(\tilde{1}, \tilde{x}), (T_{2} * T_{1})(\tilde{x}, \varphi_{1}^{-1}(\varphi_{2}^{-1}(\tilde{y}))))$$

$$= I(\varphi_{2}(\varphi_{1}(\tilde{x})), \tilde{y}).$$

Thus in all cases we have shown that $T_1 \supset (T_2 \supset I) = (T_2 * T_1) \supset I$, for all $T_2, T_1 \in \mathcal{K}$ and $I \in \mathbb{I}$.

ii) Let $I \in \mathbb{I}$. Then $I_D \supset I = (I \rhd I_D) * I_D^{-1} = I \rhd I_D = I$, hence \supset is an anti-group action. \square

Definition 14. Let $I, J \in \mathbb{I}$. Then the relation defined as follows is an equivalence relation: $I \sim_{\square} J$ if and only if $J = T_1 \sqcup ((T_3 \sqsupset I) \lozenge T_2)$ for some $T_1, T_2, T_3 \in \mathcal{K}$.

In fact, by expanding the above J as follows

$$J = T_1 \sqcup ((T_3 \sqcup I) \lozenge T_2) = T_1 * ((T_3 \sqcup I) \lozenge T_2)$$

= $T_1 * ((T_3 \sqcup I) * T_2) = T_1 * ((I \rhd T_3) * T_3^{-1} * T_2)$

Then $I \sim_{\square} J$ if and only if $J = T_1 * ((I \rhd T_3) * T_3^{-1} * T_2)$ for some $T_1, T_2, T_3 \in \mathcal{K}$.

Theorem 15. The equivalence classes of fuzzy implications as given in (16) are exactly the equivalence classes obtained from the relation \sim_{\square} , i.e., for any $I \in \mathbb{I}$, $[I]_{\sim_{\square},\psi,\mu} = [I]_{\sim_{\square}}$.

Proof. Let $I \in \mathbb{I}$. Then

$$\begin{split} [I]_{\sim_{\square}} &= \{J \in \mathbb{I} | J \sim_{\square} I \} \\ &= \{J \in \mathbb{I} | J = T_1 * ((I \rhd T_3) * T_3^{-1} * T_2) \quad for \, some \, T_1, T_2, T_3 \in \mathcal{K} \} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = (T_1 * ((I \rhd T_3) * T_3^{-1} * T_2)(\tilde{x}, \tilde{y}) \quad for \, all \, \tilde{x}, \tilde{y} \in L^* \} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = T_1(\tilde{x}, ((I \rhd T_3) * T_3^{-1} * T_2)(\tilde{x}, \tilde{y}) \quad for \, all \, \tilde{x}, \tilde{y} \in L^* \} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = T_1(\tilde{x}, ((I \rhd T_3)(\tilde{x}, (T_3^{-1} * T_2)(\tilde{x}, \tilde{y})))) \quad for \, all \, \tilde{x}, \tilde{y} \in L^* \} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = T_1(\tilde{x}, I(T_3(\tilde{1}, \tilde{x}), T_3(\tilde{x}, (T_3^{-1} * T_2)(\tilde{x}, \tilde{y})))) \quad for \, all \, \tilde{x}, \tilde{y} \in L^* \} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = T_1(\tilde{x}, I(T_3(\tilde{1}, \tilde{x}), T_2(\tilde{x}, \tilde{y})))) \quad for \, all \, \tilde{x}, \tilde{y} \in L^* \} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = \begin{cases} \tilde{1} & \text{if} \quad \tilde{x} = \tilde{0} \\ \varphi(I(\psi(\tilde{x}), \mu(\tilde{y})) \quad otherwise \end{cases} \\ &= \{J \in \mathbb{I} | J(\tilde{x}, \tilde{y}) = \varphi(I(\psi(\tilde{x}), \mu(\tilde{y})) \quad for \, some \, \varphi, \psi, \mu \in \Theta \} \\ &= [I]_{\sim_{\varphi,\psi,\mu}} \end{split}$$

In other words, this result shows that any bijective transformation can be represented by a composition of group actions and an anti-group action of \mathcal{K} on \mathbb{I} .

7 Conclusion

Our motivation for this study was to propose a binary operation * on the set \mathbb{I} of all intuitionistic fuzzy implications that would give a rich enough algebraic structure to glean newer and better perspectives on intuitionistic fuzzy implications. The operation * proposed in this work not only gave a novel way of generating newer intuitionistic fuzzy implications from given ones, but also, for the first time, imposed a monoid structure on \mathbb{I} . By defining a suitable group action on \mathbb{I} and the equivalence classes obtained therefrom. And we have shown that the bijective transformations given in (1) can be seen as a composition of group actions \lozenge , \sqcup and \square .

References

- [1] Atanassov, K. & Stoeva, S. (1983) Intuitionistic fuzzy sets, *Proceedings Polish Symposium on Interval and Fuzzy Mathematics*, Poznan, 23–26, 1983.
- [2] Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- [3] Atanassov, K. T., & Gargov, G. (1998) Elements of intuitionistic fuzzy logic, Part I, *Fuzzy Sets and Systems*, 95, 39–52.

- [4] Cornelis, C., Deschrijver, G. & Kerre, E. E. (2002) Classification of intuitionistic fuzzy implicators: an algebraic approach, *Proceedings of the 6th Joint Conference on Information Sciences*, Durham, North Carolina, 105–108.
- [5] Cornelis, C., Deschrijver, G. & Kerre, E. E. (2002) Intuitionistic fuzzy connectives revisited, *Proceedings of IPMU'02*, 1–5 July 2002, 1839–1844.
- [6] Mordeson, et al (2003) Fuzzy semigroups, Springer-Verlag, Heidelberg.
- [7] Szmidt, E., & Kacprzyk, J. (2001) Intuitionistic fuzzy sets in some medical applications, *B. Reusch: Fuzzy Days* '2001, 148–151.
- [8] Szmidt, E., & Kacprzyk, J. (2004) A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning, *L. Rutkowski et al. (Eds.): Proceedings of ICAISC*'2004, 388–393.
- [9] Szmidt, E., & Kacprzyk, J. (2001) Intuitionistic fuzzy sets in intelligent data analysis for medical diagnosis, V.N. Alexandrov et al. (Eds.): Proceedings of ICCS'2001, 263–271.
- [10] Zadeh, L. A. (1973) Outline of a new approach to the analysis of complex systems and decision processes, *IEEE Trans. Systems Man and Cybernetics*, 3(1), 28–44.