Title of paper:
|
On I-lacunary summability methods of order α in intuitionistic fuzzy 2-normed spaces
|
Author(s):
|
Ekrem Savaş
|
Department of Mathematics, Istanbul Ticaret University, Sütlüce-Istanbul, Turkey
|
esavas@ticaret.edu.tr
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 4, pages 15—30
|
Download:
|
PDF (242 Kb Kb, File info)
|
Abstract:
|
In this paper, we introduce and study the notion I-statistical convergence of order α, and I-lacunary statistical convergence of order α with respect to the intuitionistic fuzzy 2-normed space, investigate their relationship and also we have proved some inclusion theorems.
|
Keywords:
|
Ideal, Filter, I-statistical convergence, I-lacunary statistical convergence, Statistical convergence of order α
|
AMS Classification:
|
Primary 40G99
|
References:
|
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K., Pasi, G., & Yager, R. (2002) Intuitionistic fuzzy interpretations of multiperson multicriteria decision making, Proceedings of 2002 First International IEEE Symposium Intelligent Systems, 1, 115–119.
- Bhunia, S., Das, P., & Pal, S. (2012) Restricting statistical convergenge, Acta Math. Hungar, 134(1-2), 153–161.
- Colak, R. (2010) Statistical convergence of order α, Modern methods in Analysis and its Applications, New Delhi, India, Anamaya Pub., 121–129.
- Das, P., & E. Savaş (2014) On I-statistical and I-lacunary statistical convergence of order α, Bull. iranian Soc., 40(2), 459–472.
- Das, P., Savaş, E., & Ghosal, S. Kr. (2011) On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24, 1509–1514.
- Fast, H. (1951) Sur la convergence statistique, Colloq. Math., 2, 241–244.
- Fridy, J. A. (1985) On statistical convergence, Analysis, 5, 301–313.
- Fridy, J. A., & Orhan, C. (1993) Lacunary statistical convergence, Pacific J. Math., 160, 43–51.
- Gahler, S. (1965) Linear 2-normietre Raume, Math. Nachr., 28, 1–43.
- Karakus, S., Demirci, K., & Duman, O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons Fractals 35, 763–769.
- Kostyrko, P., Salat, T., & Wilczynki, W. (2000-2001) I-convergence, Real Anal. Exchange, 26(2), 669–685.
- Mohiuddine, S. A., & Savaş, E. (2012) Lacunary statistically convergent double sequences in probabilistic normed spaces, Ann. Univ. Ferrara, 58, 331–339.
- Mohiuddine, S. A., & Aiyub, M. (2012) Lacunary statistical convergence in random 2- normed spaces, Appl. Math. Inf. Sci, 6, 581–585.
- Mursaleen, M., & Mohiuddine, S. A. (2009) On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math., 233, 142–149.
- Mursaleen, M., & Danish Lohani, Q. M. (2009) Intuitionistic fuzzy 2-normed space and some relates concepts, Chaos, Solitons and Fractals, 42, 224–234.
- Mursaleen, M., Mohiuddine S. A., & Edely, H.H. (2010) On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59, 603–611.
- Nanda, S. (1989) On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33, 123–126.
- Nuray, F., & Savaş, E. (1994) Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 99(3), 353–355.
- Park, J. H. (2004) Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22, 1039–1046.
- Saadati, R., & Park, J. H. (2006) On the intuitioistic fuzzy topologicial spaces, Chaos, Solitons and Fractals, 27, 331–344.
- Salat, T. (1980) On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139–150.
- Savaş, E., & Gurdal, M. (2014) Certain summability methods in intuitionistic fuzzy normed spaces, Journal of Intelligent & Fuzzy Systems, 27, 1621–1629.
- Savaş, E., & Das, P. (2011) A generalized statistical convergence via ideals, Appl. Math. Lett., 24, 826–830.
- Savaş, E. (2015) On I-lacunary statistical convergence of order α for sequences of sets, Filomat, 29(6), 1223–1229.
- Savaş, E. (2015) On some summability methods using ideals and fuzzy numbers, J. Intell. Fuzzy Systems, 28(4), 1931–1936
- Savaş, E. (2013) On generalized I-statistical convergence of order α, Iran. J. Sci. Technol. Trans. A Sci. 37(3), Special issue: Mathematics, 397–402.
- Savaş, E. (2013) Some I-convergent sequence spaces of fuzzy numbers defined by infinite matrix, Math. Comput. Appl., 18(2), 84–93.
- Savaş, E. (2012) On generalized A-difference strongly summable sequence spaces defined by ideal convergence on a real n-normed space, J. Inequal. Appl., 87, 9 pp.
- Savaş, E. I-lacunary vector valued sequence spaces in 2-normed spaces via Orlicz function, Aligarh Bull. Math. 30(1-2), 25–34.
- Savaş, E., & Gurdal, M. (2015) A generalized statistical convergence in intuitionistic fuzzy normed spaces, ScienceAsia 41, 289–294.
- Savaş, E. (2015) Generalized statistical convergence in intuitionistic fuzzy 2-normed space, Appl. Math. Inf. Sci. 9(1L), 59–63.
- Savaş, E. (2015) On λ-statistical convergence of order α in intuitionistic fuzzy normed spaces, Notes on Intuitionistic Fuzzy Sets, 21(4), 13–22.
- Savaş, E. Iθ-summability methods in intuitionistic fuzzy 2-normed spaces, (to appear).
- Schoenberg, I. J. (1959) The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361–375.
- Schweizer, B., & Sklar, A. (1960) Statistical metric spaces, Pacific J. Math., 10, 313–334.
- Sen, M., & Debnath, P. (2011) Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Math. Comput. Modelling, 54, 2978–2985.
- Tripathy, B. C., & Dutta, A. J. (2010) Bounded variation double sequence space of fuzzy real numbers, Computers and Mathematics with Applications, 59, 1031–1037.
- Tripathy, B. C., & Dutta, A. J. (2013) Lacunary bounded variation sequence of fuzzy real numbers, Journal of Intelligent and Fuzzy Systems, 24, 185–189.
- Zadeh, L. A. (1965) Fuzzy sets, Inform. Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|