As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Representation of complex intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/22/2/22-31)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/2/22-31
Title of paper: Representation of complex intuitionistic fuzzy sets
Author(s):
A. El Allaoui
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Said Melliani
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
said.melliani@gmail.com
Lalla Saadia Chadli
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Presented at: International Conference on Intuitionistic Fuzzy Sets Theory and Applications, 20–22 April 2016, Beni Mellal, Morocco
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 2, pages 22—31
Download:  PDF (127  Kb, File info)
Abstract: In this paper, we propose the notion of complex intuitionistic fuzzy sets defined by complex-valued membership and non-membership functions in order to make extension the result presented in [6]. We first give a Cartesian representation, and then we discuss the polar representation.
Keywords: Complex intuitionistic fuzzy sets, Cartesian representation, Polar representation.
AMS Classification: 03F55.
References:
  1. Atanassov, K. (1986), Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
  2. Atanassov, K. (1999), Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica-Verlag, Heidelberg.
  3. Atanassov, K. T., Vassilev, P. M., & Tsvetkov, R. T. (2013), Intuitionistic Fuzzy Sets, Measures and Integrals. Bulgarian Academic Monographs (12), Professor Marin Drinov Academic Publishing House, Sofia.
  4. Ettoussi, R., Melliani, S., Elomari, M., & Chadli, L. S. (2015) Solution of intuitionistic fuzzy differential equations by successive approximations method, Proc. of 19th Int. Conf. on IFSs, Burgas, 4–6 June 2015, Notes on Intuitionistic Fuzzy Sets, 21(2), 51–62.
  5. Elomari, M., Melliani, S., Ettoussi, R. & Chadli, L. S. (2015) Intuitionistic fuzzy semigroup, Proc. 19th Int. Conf. on IFSs, Burgas, 4–6 June 2015 Notes on Intuitionistic Fuzzy Sets, 21(2), 43–50.
  6. Karpenko, D., Van Gorder, R. A. & Kandel, A. (2014) The Cauchy problem for complex fuzzy differential equations, Fuzzy Sets and Systems 245, 18–29.
  7. Melliani, S., Elomari, M., Ettoussi, R., & Chadli, L. S. (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
  8. Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002) Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10, 171–186.
  9. Tamir, D. E., Jin, L., & Kandel, A. (2011) A new interpretation of complex membership grade, Int. J. Intell. Syst., 26, 285–312.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.