As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On α- and α*- separation axioms in intuitionistic fuzzy topological spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/17/2/35-43)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/17/2/35-43
Title of paper: On α- and α*- separation axioms in intuitionistic fuzzy topological spaces
Author(s):
Rekha Srivastava
Department of Applied Mathematics,Institute of Technology, Banaras Hindu University,Varanasi, 221005, India
rekhasri@bhu.ac.in
Amit Kumar Singh
Department of Applied Mathematics,Institute of Technology, Banaras Hindu University,Varanasi, 221005, India
amitkitbhu@gmail.com
Presented at: 15th ICIFS, Burgas, 11-12 May 2011
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 17 (2011) Number 2, pages 35—43
Download:  PDF (172  Kb, File info)
Abstract: In this paper we introduce the gradation of the separation axioms T0, T1 and T2 in an intuitionistic fuzzy topological space in the sense of Mondal and Samanta [6]. Using these concepts we have defined α- and α*- Ti intuitionistic fuzzy topological spaces, i = 0, 1, 2, and studied them in detail.
Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy topological space, Separation axioms, Bifuzzy topological space.
AMS Classification: 54A40, 03E72
References:
  1. Atanassov, K.T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
  2. Chang, C.L. Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
  3. Fang, J. I-FTOP is isomorphic to I-FQN and I-AITOP, Fuzzy Sets and Systems 147 (2004) 317–325.
  4. Kubiak, T. On fuzzy topologies, Ph.D Thesis, A. Mickiewicz, Poznan, Poland, 1985.
  5. Pu, P.-M. Y.-M. Liu. Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore- Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
  6. Mondal, T.K. , S.K. Samanta. On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002) 323–336.
  7. Abu Safiya, A.S. , A.A. Fora, M.W. Warner. Fuzzy separation axioms and fuzzy continuity in fuzzy bitopological spaces, Fuzzy Sets and Systems 62 (1994) 367–373.
  8. Šostak, A.P. On fuzzy topological structure, Rend. Circ. Mat. Palermo (Suppl. Ser. II) 11 (1985) 89–103.
  9. Srivastava, M., R. Srivastava. On fuzzy pairwise - T0 and fuzzy pairwise - T1 bitopological spaces, Indian J. Pure Appl. Math. 32 (2001) 387–396.
  10. Srivastava, R., S.N. Lal, and A.K. Srivastava. Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981) 497-506.
  11. Srivastava, R., S.N. Lal, A.K. Srivastava. On fuzzy T0 and R0 topological spaces, J. Math. Anal. Appl. 136 (1988) 66–73.
  12. Srivastava, R., S.N. Lal, A.K. Srivastava. On fuzzy T1 topological spaces, J. Math. Anal. Appl. 136 (1988) 124–130.
  13. Srivastava, R., M. Srivastava. On pairwise Hausdorff fuzzy bitopological spaces, J. Fuzzy Math. 5 (1997) 553–564.
  14. Wong, C.K. Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974) 316–328.
  15. Yue, Y., J. Fang. On separation axioms in I-fuzzy topological spaces, Fuzzy Sets and Systems 157 (2006) 780–793.
  16. Zadeh, L.A. Fuzzy sets, Inform. and Control 8 (1965) 338–353.
  17. Zadeh, L.A. A fuzzy set theoretic interpretation of linguistic hedges, Memorandum No. ERLM335 University of California, Berkeley (1972).
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.