As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Assigning the parameters for intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/11/6/01-12)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/11/6/01-12
Title of paper: Assigning the parameters for intuitionistic fuzzy sets
Author(s):
Eulalia Szmidt
Systems Research lnstitute - Polish Academy of Sciences, ul. Newelska 6, OL-447 Warsaw, Poland
szmidt@ibspan.waw.pl
Jim Baldwin
Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, England
Jim.Baldwin@bristol.ac.uk
Presented at: 1st International Workshop on Intuitionistic Fuzzy Sets, 22 September 2005, Banská Bystrica, Slovakia
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 11 (2005), Number 6, pp 1-12
Download:  PDF (143  Kb, File info)
Abstract: In this article we propose two ways of assigning the parameters for intuitionistic fuzzy sets: by asking experts, and from relative frequency distributions (histograms).


References:
  1. Atanassov K. (1983), Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Deposed in Centr. Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
  2. Atanassov K. (1986), Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87—96.
  3. Atanassov K. (1989), More on intuitionistic fuzzy sets, Fuzzy Sets and Systems 33, 37—46.
  4. Atanassov K. (1994), New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, 137—142.
  5. Atanassov K. (1999), Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag.
  6. Baldwin. J.F. (1991), Combining Evidences for Evidential Reasoning. International Journal of Intelligent Systems, 6, 569—616.
  7. Baldwin J.F. (1992b), The Management of Fuzzy and Probabilistic Uncertainties for Knowledge Based Systems. In Encyclopaedia of AI (ed. S.A. Shapiro), John Wiley (2nd ed.) 528—537.
  8. Baldwin J.F. (1994), Mass assignments and fuzzy sets for fuzzy databases. In. Advances in the Dempster-Shafer theory of evidence. Ed. R. Yager at al. John Wiley, 577—594.
  9. Baldwin J.F., Pilsworth B.W. (1990), Semantic Unification with Fuzzy Concepts in Fril. IPMU’90, Paris.
  10. Baldwin J.F., T.P. Martin, B.W. Pilsworth (1995) FRIL — Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley.
  11. Baldwin J.F., Lawry J., Martin T.P.(1995a), A Mass Assignment Theory of the Probability of Fuzzy Events. ITRC Report 229, University of Bristol, UK.
  12. Baldwin J.F., Coyne M.R., Martin T.P.(1995b), Intelligent Reasoning Using General Knowledge to Update Specific Information: A Database Approach. Journal of Intelligent Information Systems, 4, 281—304.
  13. Baldwin J.F., T.P. Martin (1996), FRIL as an Implementation Language for Fuzzy Information Systems. IPMU’96, Granada, 289—294.
  14. Baldwin J.F., J. Lawry, T.P. Martin (1998), The Application of generalized Fuzzy Rules to Machine Learning and Automated Knowledge Discovery. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 6, No. 5, 459—487.
  15. Dubois D. and Prade H. (1983) Unfair coins and necessity measures: towards a possibilistic interpretation of histograms. Fuzzy Sets and Systems 10 (1983) 15—20.
  16. Dubois D. and Prade H. (1997) The three semantics of fuzzy sets. Fuzzy Sets and Systems, Vol. 90, 141 — 150.
  17. Kahneman D. (2002) Maps of bounded rationality: a perspective on intuitive judgment and choice. Nobel Prize Lecture, December 8, 2002.
  18. Sutherland S. (1994) Irrationality. The Enemy Within. Penguin Books.
  19. Szmidt E. and Baldwin J. (2003) New similarity measure for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs, Vol. 9, No. 3, 60—76.
  20. Szmidt E. and Baldwin J. (2004) Entropy for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs, Vol. 10, No. 3, 15—28.
  21. Szmidt E. and Kacprzyk J. (1996a) Intuitionistic fuzzy sets in group decision making. Notes on IFS, Vol. 2, 15—32.
  22. Szmidt E. and Kacprzyk J. (1996c) Remarks on some applications of intuitionistic fuzzy sets in decision making. Notes on IFS, Vol.2, No.3, 22—31.
  23. Szmidt E. and Kacprzyk J. (1998a) Group Decision Making under Intuitionistic Fuzzy Preference Relations. Proc. IPMU’98, 172—178.
  24. Szmidt E. and Kacprzyk J. (1999). Probability of Intuitionistic Fuzzy Events and their Applications in Decision Making. Proc. of EUSFLAT-ESTYLF Conf. 1999. Palma de Mallorca, 457—460.
  25. Szmidt E. and Kacprzyk J. (1999b) - A Concept of a Probability of an Intuitionistic Fuzzy Event. Proc. of FUZZ-IEEE’99 - 8th IEEE International Conference on Fuzzy Systems, August 22-25, 1999 Seoul, Korea, III 1346—1349.
  26. E.Szmidt and J. Kacprzyk (2000b) On Measures of Consensus Under Intuitionistic Fuzzy relations. Proc. IPMU’2000, Madrid, July 3-7, 641—647.
  27. E.Szmidt and J. Kacprzyk (2002a) — Analysis of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Preferences. Proc. IPMU’2002, Annecy, France, 1-5 July, 1859—1865.
  28. E.Szmidt and J. Kacprzyk (2002b) An Intuitionistic Fuzzy Set Based Approach to Intelligent Data Analysis (an application to medical diagnosis). In A. Abraham, L. Jain, J. Kacprzyk (Eds.): Recent Advances in Intelligent Paradigms and Applications. Springer-Verlag, 57—70.
  29. E.Szmidt and J. Kacprzyk (2002c) Evaluation of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Sets. Proc. IS’2002 — Int. IEEE Symposium: Intelligent Systems, Varna, Bulgaria, IEEE Catalog Number 02EX499, 166—170.
  30. Szmidt E. and Kacprzyk J. (2005) A New Concept of a Similarity Measure for Intuitionistic Fuzzy Sets and its Use in Group Decision Making. In V. Torra, Y. Narukawa, S. Miyamoto (Eds.): Modelling Decisions for Artificial Intelligence. LNAI 3558, Springer 2005, 272—282.
  31. Yager R.R. (1979) Level sets for membership evaluation of fuzzy subsets. Tech. Rep. RRY-79-14, Iona College, New York. Also in: R.Yager, Ed., Fuzzy Set and Possibility Theory — Recent Developments. Pergamon Press, Oxford 1982, 90—97.
  32. Yamada K. (2001) Probability—Possibility Transformation Based on Evidence Theory. Proc. IFSA—NAFIPS’2001, 70—75.
  33. Zadeh L.A. (1965) Fuzzy sets. Information and Control, 8, 338—353.
  34. Zadeh L.A. (1978) Fuzzy Sets as the Basis for a Theory of Possibility. Fuzzy Sets and Systems, 1, 3—28.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.