As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Intuitionistic fuzzy sets - an alternative look

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:eusflat-2003-135-140
Title of paper: Intuitionistic fuzzy sets - an alternative look
Author(s):
Anna Pankowska
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznan, Poland
Maciej Wygralak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznan, Poland
wygralak@math.amu.edu.pl
Presented at: 3rd Conference of the European Society for Fuzzy Logic and Technology, Zittau, Germany, September 10-12, 2003
Published in: Conference proceedings, pages 135-140
Download:  PDF (71  Kb, File info)
Abstract: This paper concerns the theory of intuitionistic fuzzy sets according to Atanassov. If triangular norms, especially nonstrict Archimedean ones, are used, we propose a revision and a flexibilizing generalization of some fundamental notions and constructions of that theory. Its application to group decision making is outlined.
Keywords: Intuitionistic fuzzy set, Triangular norm, Scalar cardinality, Group decision making
References:
  1. K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg New York, 1999.
  2. K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, in: Proc. Polish Symp. Interval and Fuzzy Mathematics, Poznan, 1983, 23-26.
  3. G. Deschrijver and E. Kerre, A generalisation of operators on intuitionistic fuzzy sets using triangular norms and conorms, Notes on IFS 8 (2002) 1, 19-27.
  4. S. Gottwald, A Treatise on Many-Valued Logics, Research Studies Press, Baldock, Hertfordshire, 2001.
  5. J. Kacprzyk, Group decision making with a fuzzy linguistic majority, Fuzzy Sets abd Systems, 18 (1986) 105-118.
  6. E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer, Dordrecht, 2000.
  7. A. Pankowska and M. Wygralak, On triangular norm-based intuitionistic fuzzy sets, in preparation.
  8. E. Szmidt and J. Kacprzyk, Group decision making under intuitionistic fuzzy preference relations, in: Proc. 7th IPMU Conf., Paris, 1998, 172-178.
  9. E. Szmidt and J. Kacprzyk, Decision making in an intuitionistic fuzzy environment, in: Proc. Joint 4th EUROFUSE and 2nd SIC Conf., Budapest, 1999, 292-297.
  10. E. Szmidt and J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets and Systems 118 (2001) 467-477.
  11. G. Takeuti and S. Titani, Intuitionistic fuzzy logic and intuitionistic fuzzy set theory, J. Symb.Logic, 49 (1984) 851-866.
  12. G. Takeuti and S. Titani, Fuzzy logic and fuzzy set theory, Arch. Math. Logic, 32 (1992) 1-32.
  13. G. J. Wang and Y. Y. He, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems 110 (2000) 271-274.
  14. M. Wygralak, An axiomatic approach to scalar cardinalities of fuzzy sets, Fuzzy Sets and Systems 110 (2000) 175-179.
  15. M. Wygralak, Cardinalities of Fuzzy Sets, Springer-Verlag, Berlin Heidelberg 2003.
  16. M. Wygralak, Cardinalities of fuzzy sets with triangular norms, in: Proc. EUSFLAT'2003 Conf., Zittau, 2003.
  17. L. A. Zadeh, A computational approach to fuzzy quantifiers in natural languages, Comput. and Math. with Appl. 9 (1983) 149-184.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.