Title of paper:
|
Intuitionistic fuzzy model of the axioms of the paraconsistent set theory NF1
|
Author(s):
|
Krassimir Atanassov
|
CLBME - Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, Sofia-1113, Bulgaria
|
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 2 (1996) Number 1, pages 11—14
|
Download:
|
PDF (3430 Kb, File info)
|
Abstract:
|
It is shown that the axioms of the paraconsistent set theory NF1 can he proved as theorems in the frames of the intuitionistic fuzzy logic.
|
AMS Classification:
|
0ЗЕ72
|
References:
|
- da Costa, N, C. A., de Alcantara L. P., On paraconsistent set theories, Boletin da Sociedade Paranaense de Matematica, Vol. 12/13 (1991/2), No. 1/2, 77-81
- da Costa, N. C. A., Sistemas formais inconsistentes, Thesis, Federal University of Parana, 1963.
- Atanassov K., Two variants of intuitonistic fuzzy prepositional calculus. Preprint IM-MFAIS-5-88, Sofia, 1988.
- Atanassov K., Two variants of intuitionistic fuzzy modal logic. Preprint IM-MFAIS-3-89, Sofia, 1989.
- Atanassov E., Gargov G,, Intuitionistic fuzzy logic, Compt. rend. Acad. bulg. Sci., Tome 43, N. 3, 1990, 9-12.
- Gargov G., Atanassov K., Two results in intuitionistic fuzzy logic, Compt. rend. Acad. bulg. Sci., Tome 45, N. 12, 1992, 29-31.
- Negoita C. , Ralescu D., Applications of fuzzy sets to systems analysis. BirKhauser, Basel, 1975.
- Dubois D., Prade H., Fuzzy logics and their generalized modus ponens revisited, Cybernetics and Systems, 1984, Vol. 15, No. 3-4, 293-331.
- Mendelson E. , Introduction to mathematical logic, Princeton, NJ: D. Van Nostrand, 1964.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|