As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Deferred statistical convergence of sequences in intuitionistic fuzzy normed spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/24/3/64-78
Title of paper: Deferred statistical convergence of sequences in intuitionistic fuzzy normed spaces
Author(s):
Said Melliani
LMACS, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
saidmelliani@gmail.com
M. Küçükaslan
Department of Mathematics, Mersin University, Mersin, 33343, Turkey
mkkaslan@gmail.com
H. Sadiki
LMACS, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
sadiki.info@gmail.com
Lalla Saadia Chadli
LMACS, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
sa.chadli@yahoo.fr
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 24, 2018, Number 3, pages 64—78
DOI: https://doi.org/10.7546/nifs.2018.24.3.64-78
Download:  PDF (206  Kb, File info)
Abstract: In this paper, the intuitionistic fuzzy deferred statistical convergence in the intuitionistic fuzzy normed space is defined by considering deferred density given in [13]. Besides the main properties of this new method, it is compared with intuitionistic fuzzy statistical convergence and itself under different restrictions on the method. Some special cases of the obtained results are coincided with known results in literature.
Keywords: Convergence in intuitionistic fuzzy normed space, Intuitionistic fuzzy deferred convergence, Intuitionistic fuzzy deferred statistical convergence.
AMS Classification: 03E72, 40A35.
References:
  1. Agnew, R. P. (1932) On deferred Cesaro Mean, Comm. Ann. Math., 33, 413–421.
  2. Alimohammadi, M., & Roohi, M. (2006) Compactness in fuzzy minimal spaces, Chaos, Solitons & Fractals, 28, 906–912.
  3. Atanassov, K. (1983) Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  4. Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
  5. Debnath, P. (2012) Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63 (3), 708–715.
  6. Erceg, M. A. (1979) Metric spaces in Fuzzy set theory, J. Math. Anal. Appl., 69, 205–230.
  7. Fast, H. (1951) Sur la convergence statistique, Colloq. Math. 2, 241–244.
  8. Fradkov, A. L., & Evans, R. J. (2005) Control of Chaos: Methods and applications in engineering, Chaos, Solitons & Fractals, 29, 33–56.
  9. George, A., & Veeramani, P. (1994) On some results in Fuzzy metric Space, Fuzzy Sets and Systems, 64, 395–399.
  10. Hong, L. & Sun, J. Q. (2006) Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 1, 1–12.
  11. Kaleva, O. & Seikkala, S. (1984) On Fuzzy metric spaces, Fuzzy Sets and Systems, 12, 215–229.
  12. Karakus, S., Demirci, K. & Duman, O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons & Fractals, 35, 763–769.
  13. K¨uc¸ ¨ukaslan M. & Yilmazt¨urk, M. (2016) On Deferred Statistical Convergence of Sequences, Kyungpook Math. J., 56, 357–366.
  14. Madore, J. (1992) Fuzzy physics, Ann. Phys., 219, 187–198.
  15. Melliani, S., Elomari, M., Chadli, L. S. & Ettoussi, R. (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21 (1), 43–53.
  16. Mohiuddine, S. A., Mohiuddine, Q. M. & Lahoni, D. (2009) On generalized statistical convergence in intuitionistic fuzzy normed spaces, Chaos, Solitons & Fractals, 42, 1731–1737.
  17. Mursaleen, M. & Mohiuddine, S. A. (2009) On lacunary statistical convergence with respect to the intuitionistic fuzzy normed spaces, J. Comput. appl. Math., 233, 142–149.
  18. Saadati, R. & Park, J. H. (2006) On the intuitionistic fuzzy topological spaces, Chaos, Solitons & Fractals, 27, 331–344.
  19. Schweizer, B. & Sklar, A. (1960) Statistical metric spaces, Pac. J. Math., 10 (1), 313–334.
  20. Steinhaus, H. (1951) Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73–74.
  21. Zadeh, L. A. (1965) Fuzzy sets, Inform Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.