Submit your research to the International Journal "Notes on Intuitionistic Fuzzy Sets". Contact us at

Call for Papers for the 25th Jubilee Edition of the International Conference on Intuitionistic Fuzzy Sets is now open!
Conference: 9–10 September 2022 • Deadline for submission: 30 May 2022.

Issue:Basic theorems from extreme value theory for MV-algebras

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Title of paper: Basic theorems from extreme value theory for MV-algebras
Katarína Čunderlíková
Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava, Slovakia
Renáta Bartková
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
Published in: "Issues in IFSs and GNs", Volume 14 (2018/19), pages 1-24
Download: Download-icon.png PDF (519  Kb, Info)
Abstract: In the paper the space of observables with respect to MV-algebras is considered. We prove the modification of the Fisher-Tippet Gnedenko theorem and the Pickands-Balkema-de Haan theorem for sequence of independent observables in probability MV-algebra. We show that the results for MValgebras can be applied for intuitionistic fuzzy sets and interval valued sets, too.
Keywords: MV-algebra, MV-state, Observable, Joint observable, Independence, Fisher-Tippet-Gnedenko theorem, Excess distribution, Maximum domain of attraction, Generalized Pareto distribution, Extreme value theory, Pickands-Balkema-de Haan theorem.
  1. Atanassov, K., Intuitionistic Fuzzy sets : Theory and Applications. Physica Verlag, New York, 1999.
  2. Atanassov, K., On Intuitionistic Fuzzy Sets. Springer, Berlin, 2012.
  3. Bartková, R., K. Čunderlíková, Fisher-Tippett-Gnedenko theorem for Intuitionistic Fuzzy Events. In: Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Kacprzyk J. et al. eds., Vol. 641, Springer, Cham, 2018, 125–135.
  4. Bartková, R., K. Čunderlíková, The Pickands-Balkema-de Haan theorem. Notes on Intuitionistic Fuzzy Sets, 24 (2), 2018, 63–75.
  5. Birkhoff, G., Lattice Theory. Vol. 25 of AMS Colloquium Publications, Providence, Rhode Island, 1973.
  6. Coles, S., Statistics of Extremes. Springer, 2001.
  7. Embrechts, P., C. Kluppelberg, T. Mikosch, Modelling Extremal Events: For Insurance and Finance. Springer, Verlag, 1997.
  8. Gumbel, E. J., Lattice Theory. Columbia University Press, New York, 1958.
  9. Haan, L., A. Ferreira, Extreme Value Theory: An Introduction. Springer, 2006.
  10. Král, P., B. Riečan, Probabilty on Interval Valued Events. In: Proceeding of Eleventh Int. Workshop on GNs and Second Int. Workshop on GNs, IFSs, KE, London, 9-10 July, 2010, 43–47.
  11. Michalíková, A., B. Riečan, On some methods of study of states on interval valued fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 24 (4), 2018, 5–12.
  12. Riečan, B., Probability theory on intuitionistic fuzzy events. In: Algebraic and Proof-theoretic aspects of Non-classical Logics. Papers in honour of Daniele Mundici’s 60th birthday. Lecture Notes in Computer Science, Vol. 4460, 2007.
  13. Riečan, B., D. Mundici, Probability on MV-algebras. Handbook of Measure Theory (E. Pap. ed.), Elsevier Science B.V., Amsterdam, 2002.
  14. Riečan, B., T. Neubrunn, Integral, Measure and Ordering. Kluwer, Dordrecht, 1997.
  15. Zadeh, L. A., The concept of linguistic variable and its application to approximate reasoning I. Information Sciences, 8 (3).

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.