Title of paper:
|
Automatic verification of properties of intuitionistic fuzzy connectives via Mathematica
|
Author(s):
|
Trifon Trifonov
|
Faculty of Mathematics and Informatics, Sofia University
|
triffon@fmi.uni-sofia.bg
|
|
Presented at:
|
7th IWIFS, Banska Bystrica, 27 September 2011
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 17 (2011) Number 4, pages 11—15
|
Download:
|
PDF (144 Kb, File info)
|
Abstract:
|
Intuitionistic fuzzy logic as defined by K. Atanassov [1, 3], is an extension of fuzzy logic, using the more general intuitionistic fuzzy sets as a model. The extension allows for many different definitions of various logical connectives, such as implication and negation, which can be suitable for different needs. This paper suggests a method for automatic verification of properties of intuitionistic fuzzy connectives using the computer algebra system Mathematica [6].
|
Keywords:
|
Intuitionistic fuzzy logic, Mathematica, computer algebra, automatic verification
|
AMS Classification:
|
03B35, 03B52, 03E72, 68T15, 68W30
|
References:
|
- Atanassov, K. (1983) Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.).
- Atanassov, K. (1988) Two variants of intuitonistic fuzzy propositional calculus. Preprint IM-MFAIS-5-88, Sofia.
- Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Physica Verlag, Heidelberg.
- Atanassov, K. (2005) Intuitionistic fuzzy implications and Modus Ponens. Notes on IFS, Vol. 11, No. 1, 1–4.
- Atanassov, K., G. Gargov. (1990) Intuitionistic fuzzy logic. Comptes Rendus de l’Academie bulgare des Sciences, Tome 43, 9–12.
- Wolfram, S. Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley Longman Publishing Co., Inc., 1988, Boston, MA, USA.
- Trifonov, T., K. Atanassov. (2006) On some intuitionistic properties of intuitionistic fuzzy implications and negations. In: Computational Intelligence, Theory and Applications (Reusch B., Ed.), Vol.38, Advances in Soft Computing, Dortmund, Germany. Springer, Berlin, September 2006, 151–158.
- Klir, G., B. Yuan. (1995) Fuzzy Sets and Fuzzy Logic, Prentice Hall, New Jersey.
- Rasiova, H., R. Sikorski. (1963) The Mathematics of Metamathematics, Pol. Acad. of Sci. Warszawa
- Dimitrov, D. (2011) IFSTool – software for intuitionistic fuzzy sets. Issues in IFSs and GNs, Vol. 9, 61–69.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|