As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Additive generators in interval-valued and intuitionistic fuzzy set theory

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/12/1/30-37
Title of paper: Additive generators in interval-valued and intuitionistic fuzzy set theory
Author(s):
Glad Deschrijver
Fuzziness and Uncertainty Modeling Research Unit, Department of Mathematics and Computer Science, Ghent University, Krijgslaan 281 (S9), B-9000 Gent, Belgium
Glad.Deschrijver@UGent.be
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 12, 2006, Number 1, pages 30-37
Download:  PDF (126  Kb, File info)
Abstract: Intuitionistic fuzzy sets in the sense of Atanassov and interval-valued fuzzy sets can be seen as [math]\displaystyle{ \mathcal{L} }[/math]-fuzzy sets w.r.t. a special lattice [math]\displaystyle{ \mathcal{L}^1 }[/math]. Deschrijver [2] introduced additive and multiplicative generators on [math]\displaystyle{ \mathcal{L}^I }[/math] based on a special kind of addition introduced in [3]. Actually, many other additions can be introduced. In this paper we investigate additive generators on LI as far as possible independently of the addition. For some special additions we investigate which t-norms can be generated by continuous additive generators which are a natural extension of an additive generator on the unit interval.
Keywords: intuitionistic fuzzy set, interval-valued fuzzy set, additive generator, addition on [math]\displaystyle{ \mathcal{L}^I }[/math], representable.
AMS Classification: 03E72
References:
  1. K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg/New York, 1999.
  2. G. Deschrijver, Additive and multiplicative generators in interval-valued fuzzy set theory, submitted.
  3. G. Deschrijver, Algebraic operators in interval-valued fuzzy set theory, submitted.
  4. G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems, 12(1) (2004) 45-61.
  5. G. Deschrijver and E. E. Kerre, Classes of intuitionistic fuzzy t-norms satisfying the residuation principle, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(6) (2003) 691-709.
  6. G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 133(2) (2003) 227-235.
  7. G. Deschrijver and E. E. Kerre, Implicators based on binary aggregation operators in interval-valued fuzzy set theory, Fuzzy Sets and Systems, 153(2) (2005) 229-248.
  8. G. Deschrijver and A. Vroman, Generalized arithmetic operations in interval-valued fuzzy set theory, Journal of Intelligent and Fuzzy Systems, in press.
  9. W. M. Faucett, Compact semigroups irreducibly connected between two idempotents, Proceedings of the American Mathematical Society, 6 (1955) 741-747.
  10. J. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18(1) (1967)145-174.
  11. M. B. Gorzałczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 21(1) (1987) 1-17.
  12. P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht, 1998.
  13. E. P. Klement, R. Mesiar and E. Pap, Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms, Fuzzy Sets and Systems, 104 (1999) 3-13.
  14. E. P. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2002.
  15. C.-H. Ling, Representation of associative functions, Publ. Math. Debrecen, 12 (1965) 189-212.
  16. P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Annals of Mathematics, 65 (1957) 117-143.
  17. R. Sambuc, Fonctions F-loues. Application à l'aide au diagnostic en pathologie thyroidienne, Ph. D. Thesis, Université de Marseille, France, 1975.
  18. B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland, New York, 1983.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.