As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:A proposed axiomatic system for Atanassov Intuitionistic Fuzzy Logic

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/19/4/1-14
Title of paper: A proposed axiomatic system for Atanassov Intuitionistic Fuzzy Logic
Author(s):
Esfandiar Eslami
Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
Esfandiar.Eslami@uk.ac.ir, Corresponding author
Farnaz Ghanavizi Maroof
Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
Ghanavizi.farnaz66@gmail.com
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 19, 2013, Number 4, pages 1—14
Download:  PDF (186  Kb, File info)
Abstract: In this paper, we continue our studies on Intuitionistic Fuzzy Residuated Lattices (IFRLs) defined in [11]. We investigate more properties of the implication operator of these symmetric residuated lattices. We observe that most axioms of the Basic Fuzzy Logic and Intuitionistic Logic hold in Intuitionistic Fuzzy Residuated Lattices (IFRLs). Accepting these axioms together with the basic properties of operators, we propose an axiomatic system for Atanassov Intuitionistic Fuzzy Logic (A-IFL).
Keywords: Intuitionistic fuzzy residuated lattice, Residuated lattice, Symmetric lattice, Intuitionistic fuzzy logic.
AMS Classification: 03B47, 03G10.
References:
  1. Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, 1986, 87-96.
  2. Atanassov, K. T., S. Stoeva. Intuitionistic L-Fuzzy Sets, In: Trappl R. (Ed.), Elsevier Science Publishers B.V., North Holland, 1984.
  3. Atanassov, K. T., G. Gargov. Elements of Intuitionistic Fuzzy Logic. Part I, Fuzzy Sets and Systems, Vol. 95, 1998, 39-52.
  4. Baczynski, M. Residual Implications revisited, Fuzzy Sets and Systems, Vol. 145, 2004, 267-277.
  5. Burillo, P., H. Bustince. Intuitionistic Fuzzy relations. Effects of Atanassov's operators on the properties of Intuitionistic Fuzzy relations, Mathware \& Soft Computing, Vol. 2, 1995, 117-148.
  6. Cignoli, R., F. Esteva. Commutative integral bounded residuated lattices with an added involution, Annals of Pure and Applied Logic, Vol. 171, 2009, 150-170.
  7. Cintula, P. From Fuzzy Logic to Fuzzy Mathematics, Ph.D. Thesis, Technical University, Prague, 2005.
  8. Cornelis, C., G. Deschrijver, E. E. Kerre. Classification on Intuitionistic Fuzzy implicators: an Algebraic Approach, Proceedings of the FT \& T' 02, Durham, North Carolina, 2002, 105-108.
  9. Davvaz, B., V. Leoreanu-Fotea. Intuitionistic Fuzzy $n$-ary Hypergroups, J. Multi-valued Logic Soft Comput., Vol. 16, 2010, No. 1-2, 87-103.
  10. Deschrijver, G., C. Cornelis, E. E. Kerre. Intuitionistic Fuzzy Connectives Revisited, Proceedings of IPMU'02, July 1-5, 2002, 1839-1844.
  11. Eslami, E. An algebraic structure for Intuitionistic Fuzzy Logic, Iranian Jornal of Fuzzy Systems, Vol. 9, 2012, No. 6, 31-41.
  12. Esteva, F., L. Godo, P. Hajek, M. Navara. Residuated Fuzzy Logics with an Involutive Negation, Arc. Math. Logic, Vol. 39, 2000, 103-124.
  13. Goguen, J. A. L-Fuzzy Sets, Journal of Math. Anal. and Applications, Vol. 18, 1967, 145-173.
  14. Hajek, P. Metamathematics of Fuzzy Logic, Trends in Logic, Vol. 4, Kluwer Acad. Publ., Dordrecht, 1998.
  15. Hajek, P. What is Mathematical Fuzzy Logic? Fuzzy Sets and Systems, Vol. 157, 2006, 597-603.
  16. Hedayati, H. Equivalance Relations on the set of Implicative interval valued Intuitionistic (T,~S)-Fuzzy Filters of pseudo-BL algebras, J.Mult.-Valued logic Soft Comput., Vol. 17, 2011, No. 5-6, 443-458.
  17. Hong, Y., X. Ruiping, F. Xianwen. Characterizing Ordered Semigroups by means of Intuitionistic Fuzzy Bi-ideals, Mathware \& Soft Computing, Vol. 14, 2007, 57-66.
  18. Jun, Y. B. Intuitionistic Fuzzy Approach to Topological BCK-algebras, J. Multi-Valued Logic Soft Comput., Vol. 12, 2006, No. 5-6, 509-516.
  19. Mendelson, K. Introduction to Mathematical Logic, Princeton, NJ; D. Van Nostrand, 1964.
  20. Ono, H. Subsructural logics and Residuated Lattices - an Introduction, Trends in Logic, Vol. 20, 2003, 177-212.
  21. Rasiova, H. R. Sikorski. The Mathematics of Metamathematics, Warszawa, Pol. Acad. of Sci., 1963.
  22. Smets, P., P. Magrez. Implications in Fuzzy Logic, Int. J. of Approximate Reasoning, Vol. 1, 1987, 327-347.
  23. Szmidt, E., J. Kacprzyk. Intuitionistic Fuzzy Sets in Some Medical Applications, Computational Intelligence, Theory and Applications, Lecture Notes in Computer Science, Vol. 2206/2001, 148-151.
  24. Szmidt, E., K. Marta. Atanassov's intuitionistic fuzzy sets in classification of imbalanced and overlapping classes, Studies in Computational Intelligence (SCI), Vol. 109, 2008, 455-471.
  25. Tepavcevic, A., M. G. Ranitovic. General Form of Lattice Valued Intuitionistic Fuzzy Sets, Computational Intelligence: Theory and Applications, Part 14, 2006, 375-381.
  26. Tepavcevic, A., T. Gerstenkorn. Lattice valued intuitionistic fuzzy sets, Central European Journal of Mathematics, Vol. 2, 2004, No. 3, 388-398.
  27. Turunen, E., Mathematics Behind Fuzzy Logic, Advances in Soft Computing, Springer Physica-Verlag, Heidelberg, 1999.
  28. Vlachos, I. K., G. D. Sergiadis. Towards intuitionistic fuzzy image processing, Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, 28-30 Nov. 2005, 2-7.
  29. Ward, M., R. P. Dilworth. Residuated lattices, Trans. Amer. Math. Soc., Vol. 45, 1939, 335-354. Reprinted in Bogart, K., R. Freese, J. Kung (Eds.), 1990.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.