As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:A concept of entropy for intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/3/2/41-52
Title of paper: A concept of entropy for intuitionistic fuzzy sets
Author(s):
Eulalia Szmidt
Systems Research Institute Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
szmidt@ibspan.waw.pl
Janusz Kacprzyk
Systems Research Institute Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
kacprzyk@ibspan.waw.pl
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 3 (1997) Number 2, pages 41—52
Download:  PDF (4446  Kb, File info)
Abstract: A non-probabilistic-type entropy measure for intuitionistic fuzzy sets is proposed. It is a result of a geometrical interpretation of intuitionistic fuzzy sets and uses a ratio of distances between them proposed in [18]. It is also shown that the proposed measure can be defined in terms of the ratio of intuitionistic fuzzy cardinalities of FFc and FFc.
Keywords: distance between intuitionistic fuzzy set, cardinality of intuitionistic fuzzy set, entropy of intuitionistic fuzzy set.
References:
  1. Atanassov K. (1986) - Intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 20, No. 1, 87-96
  2. Atanassov K. (1989) - More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33, No. 1, 37-46.
  3. Atanassov K. (1994) - New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 61, No. 2, 137-142.
  4. Atanassov K. (1994) - Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 64, 159-174.
  5. Atanassov K. - Intuitionistic Fuzzy Sets: Theory and Applications. (Textbook; to appear).
  6. Jaynes E.T. (1979) - Where do we stand on maximum entropy? In: The Maximum Entropy Formalism, ed. By Levine and Tribus, MIT Press, Cambridge Mass.
  7. Kacprzyk J. (1997) - Multistage Fuzzy Control. J. Wiley.
  8. Kaufmann A. (1975) - Introduction to the Theory of Fuzzy Subsets - Vol.1: Fundamental Theoretical Elements. Academic Press, New York.
  9. Klir G.J. and Wierman M.J. (1997) - Uncertainty - Based Information Elements of Generalized Information Theory. Lecture Notes in Fuzzy Mathematics and Computer Science, 3, Creighton University, Omaha, Nebraska 68178 USA.
  10. Kosko B. (1986) - Fuzzy Entropy and Conditionong. Information Sciences, vol. 40, 2, 165-174.
  11. Kosko B. (1990) - Fuzziness vs. Probability. Int. Journal of General Systems, vol. 17, 2-3, 211-240.
  12. Kosko B. (1997) - Fuzzy Engineering. Prentice-Hall.
  13. De Luca A. and Termini S. (1972) - A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. Inform. And Control 20, 301-312.
  14. Szmidt E. and Kacprzyk J. (1996) - Intuitionistic fuzzy sets in group decision making. Notes on IFS, Vol. 2, 1, 15-32.
  15. Szmidt E. and Kacprzyk J. (1996) - Group decision making via intuitionistic fuzzy sets. FUBEST'96, October 9-11, Sofia, Bulgaria, 107-112.
  16. Szmidt E. and Kacprzyk J. (1996) - Remarks on some applications of intuitionistic fuzzy sets in decision making. Notes on IFS, vol.2, 3, 22-31.
  17. Szmidt E. and Kacprzyk J. (1997) -Intuitionistic fuzzy sets for more realistic group decision making. Proc. of TRANSITION'97, June 18-21, Warsaw, Poland, 430-433.
  18. Szmidt E. and Kacprzyk J. - On distances between intuitionistic fuzzy sets. To appear.
  19. Yager R. R. (1979) - On the measure of fuzziness and negation. Part I: Membership in the unit interval. Internat. J. Gen. Systems, Vol. 5, 189-200.
  20. Zadeh L. A. (1965) - Fuzzy sets. Information and Control, 8, 338-353.
  21. Zadeh L.A. (1965) - Fuzzy Sets and Systems. In: Proceedings of the Symposium on Systems Theory. pp. 29-37. Politechnic Institute of Brooklyn. N.Y.
  22. Zadeh L. A. (1983) - A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. Vol. 9, 1, 149-184.
  23. Zadeh L. A. (1983) - The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems, 11, 199-227.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.