As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:(∈, ∈∨q)-Intuitionistic fuzzy prime ideals of BCK–algebras

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/1/63-77
Title of paper: (∈, ∈∨q)-Intuitionistic fuzzy prime ideals of BCK–algebras
Author(s):
S. R. Barbhuiya
Department of Mathematics, Srikishan Sarda College, Hailakandi, Assam–788 151, India
saidurbarbhuiya@gmail.com
D. K. Basnet
Department of Mathematical Sciences, Tezpur University, Tezpur, Assam–784 028, India
dbasnet@tezu.ernet.in
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 1, pages 63-77
Download:  PDF (189  Kb, File info)
Abstract: In this paper, we introduced the concept of (∈, ∈∨q)-intuitionistic fuzzification of prime ideals in commutative BCK-algebras. We state and proved some theorems in (∈, ∈∨q)-intuitionistic fuzzy prime ideals in commutative BCK-algebras. Characterization of (∈, ∈∨q)-intuitionistic fuzzy prime ideal and conditions for (∈, ∈∨q)-intuitionistic fuzzy prime ideal to be an (∈, ∈)-intuitionistic fuzzy prime ideal are provided. Relation between (∈, ∈∨q)-intuitionistic fuzzy prime ideal and (∈∨q)-intuitionistic fuzzy level prime ideal were discussed.
Keywords: BCK-algebra, Prime ideal, Fuzzy prime ideal, (∈, ∈∨q)-Intuitionistic fuzzy prime ideal.
AMS Classification: 06F35, 03E72, 03G25, 11R44.
References:
  1. Abdullah, S. (2014) Intuitionistic fuzzy prime ideals of BCK-algebras, Annals of Fuzzy Mathematics and Informatics, 7(4), 661–668.
  2. Ahsan, J., Deeba, E. Y. & Thaheem, A. B. (1991) On prime ideal of BCK-algebras, Mathematica Japonica, 36, 875–882.
  3. Atanassov, K. T. (1986) Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20, 87–96.
  4. Attallah, M. (2000) Completely Fuzzy Prime Ideals of distributed lattices, The Journal of Fuzzy Mathematics, 8(1), 153–156.
  5. Basnet, D. K. & Singh, L. B. (2011) (∈, ∈∨q)-fuzzy ideal of BG-algebra, International Journal of Algebra, 5(15), 703–708.
  6. Barbhuiya S. R. & Choudhury, K. D. (2014) (∈, ∈∨q)-Fuzzy ideal of d-algebra, International Journal of Mathematics Trends and Technology, 9(1), 16–26.
  7. Barbhuiya, S. R. (2015) (∈, ∈∨q)-Intuitionistic Fuzzy Ideals of BCK/BCI-algebra, Notes on Intuitionistic Fuzzy Sets, 21(1), 24–42.
  8. Bhakat, S. K. & Das, P. (1996) (∈, ∈∨q)-fuzzy subgroup, Fuzzy Sets and Systems, 80, 359–368.
  9. Bhakat, S. K. (1999) (2 _q)-level subset, Fuzzy Sets and Systems, 103, 529–533.
  10. Imai, Y. & Iseki, K. (1966) On Axiom systems of Propositional calculi XIV, Proc. Japan Academy, 42, 19-22.
  11. Iseki, K. (1966) An algebra related with a propositional calculus, Proc. Japan Academy, 42, 26–29.
  12. Iseki, K. (1975) On some ideals in BCK-algebras, Math. Seminar Notes, 3, 65–70.
  13. Koguep, B. B. N., Nkuimi, C. & Lele, C. (2008) On Fuzzy Ideals of Hyperlattice, International Journal of Algebra, 2(15), 739–750.
  14. Ming, P. P. & Ming, L. Y. (1980) Fuzzy topology.I., Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Maths. Anal. Appl., 76, 571–599.
  15. Murali, V. (2004) Fuzzy points of equivalent fuzzy subsets, Information Sciences, 158, 277–288.
  16. Swamy, U. M. & Raju, D. V. (1998) Fuzzy ideals and Congruences of lattices, Fuzzy Sets and Systems, 95, 249–253.
  17. Jun, Y. B. & Xin, X. L. (2001) Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems, 117, 463–469.
  18. Jun, Y. B. & Xin, X. L. (2001) Fuzzy prime ideals and invertible fuzzy ideals in BCKalgebras, Fuzzy Sets and Systems, 117, 471–476.
  19. Jun, Y. B. (2004) On (α, β)-Fuzzy ideals of BCK/BCI-Algebras, Scientiae Mathematicae Japonicae, online, 101–105.
  20. Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.