As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Closure and interior

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Closure)
Jump to navigation Jump to search
Closure
Interior

Closure and interior are two topological operators, defined over intuitionistic fuzzy sets, as follows.

Let [math]\displaystyle{ A \subset E }[/math] be an IFS. Then,

[math]\displaystyle{ C(A) = \lbrace \langle x, \sup_{y \in E} \mu_A(y), \inf_{y \in E} \nu_A(y) \rangle \ | \ x \in E \rbrace }[/math]

[math]\displaystyle{ I(A) = \lbrace \langle x, \inf_{y \in E} \mu_A(y), \sup_{y \in E} \nu_A(y) \rangle \ | \ x \in E \rbrace }[/math]

are respectively called closure and interior.

The following basic statements are valid:

  • [math]\displaystyle{ C(A) }[/math] and [math]\displaystyle{ I(A) }[/math] are intuitionistic fuzzy sets.
  • [math]\displaystyle{ I(A) \subset A \subset C(A) }[/math]
  • [math]\displaystyle{ C(C(A)) \ = \ C(A) }[/math]
  • [math]\displaystyle{ C(I(A)) \ = \ I(A) }[/math]
  • [math]\displaystyle{ I(C(A)) \ = \ C(A) }[/math]
  • [math]\displaystyle{ I(I(A)) \ = \ I(A) }[/math]

When operations and relations are applied over the closure and interior operators, the following valid statements can be formulated:

  • [math]\displaystyle{ C(A \cap B) \ = \ C(A) \cap C(B) }[/math]
  • [math]\displaystyle{ C(A \cup B) \ \subset \ C(A) \cup C(B) }[/math]
  • [math]\displaystyle{ I(A \cap B) \ \supset \ I(A) \cap I(B) }[/math]
  • [math]\displaystyle{ I(A \cup B) \ = \ I(A) \cup I(B) }[/math]
  • [math]\displaystyle{ \overline{I(\overline{A})} \ = \ C(A) }[/math]

Further, when the modal operators necessity and possibility are applied, it holds that:

  • [math]\displaystyle{ \Box (C(A)) \ = \ C(\Box(A)) }[/math]
  • [math]\displaystyle{ \Box (I(A)) \ = \ I(\Box(A)) }[/math]
  • [math]\displaystyle{ \Diamond (C(A)) \ = \ C(\Diamond (A)) }[/math]
  • [math]\displaystyle{ \Diamond (I(A)) \ = \ I(\Diamond (A)) }[/math]

If [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] are intuitionistic fuzzy sets over [math]\displaystyle{ E }[/math], the following statements hold about them:

  • If [math]\displaystyle{ A \subset B }[/math], then [math]\displaystyle{ I(A) \subset I(B) }[/math] and [math]\displaystyle{ C(A) \subset C(B) }[/math].