| Title of paper:
|
Invariant intuitionistic fuzzy observables
|
| Author(s):
|
|
| Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 32 (2026), Number 1, pages 1–14
|
| DOI:
|
https://doi.org/10.7546/nifs.32.1.1-14
|
| Download:
|
PDF (222 Kb, File info)
|
| Abstract:
|
The aim of this contribution is showed that a sequence of Cesaro means of intuitionistic fuzzy observables has an invariant limit m-almost everywhere, where m is an intuitionistic fuzzy state. We proved that this limit is an invariant intuitionistic fuzzy observable for a special type of intuitionistic fuzzy observables called P-intuitionistic fuzzy observables. We formulated the modification of the Individual Ergodic Theorem for this case of intuitionistic fuzzy observables.
|
| Keywords:
|
Intuitionistic fuzzy observable, Intuitionistic fuzzy state, Almost everywhere convergence, Almost everywhere coincidence, Joint intuitionistic fuzzy observable, Product, Invariant intuitionistic fuzzy observable, Cesaro means, P-intuitionistic fuzzy observable, Individual Ergodic Theorem. .
|
| AMS Classification:
|
60A86, 60A10, 60F17, 28D05, 37A30.
|
| References:
|
- Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 20(1), S1–S6.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica Verlag, New York.
- Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets. Springer, Berlin.
- Čunderlíková, K. (2018). Upper and lower limits and m-almost everywhere convergence of intuitionistic fuzzy observables. Notes on Intuitionistic Fuzzy Sets, 24(4), 40–49.
- Čunderlíková, K. (2019). m-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function. Notes on Intuitionistic Fuzzy Sets, 25(2), 29–40.
- Čunderlíková, K. (2020). A note on mean value and dispersion of intuitionistic fuzzy events. Notes on Intuitionistic Fuzzy Sets, 26(4), 1–8.
- Čunderlíková, K. (2020). Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state. Iranian Journal of Fuzzy Systems, 17(5), 13–22.
- Čunderlíková, K. (2025). Coincidence of intuitionistic fuzzy observables. Notes on Intuitionistic Fuzzy Sets, 31(4), 458-464.
- Jurečková, M. (2003). The addition to the ergodic theorem on probability MV-algebras with product. Soft Computing, 7, 472–475.
- Jurečková, M., & Riečan, B. (2005). Invariant observables and the Individual Ergodic Theorem. International Journal of Theoretical Physics, 44, 1587–1597.
- Lendelová, K. (2006). Conditional IF-probability. Advances in Soft Computing: Soft Methods for Integrated Uncertainty Modelling, 37, Springer, Berlin, Heidelberg, 275–283.
- Riečan, B. (2006). On the probability and random variables on IF events. Applied Artificial Intelligence, Proc. 7th FLINS Conference, Genova (Ruan, D., et al. (Eds.). 138–145.
- Riečan, B. (2012). Analysis of fuzzy logic models, Intelligent systems (Koleshko, V. (Ed.). INTECH, 219–244.
- Riečan, B., & Neubrunn, T. (1997). Integral, Measure, and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava.
|
| Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|