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1 Introduction and basic notions

Let (X, σ, P ) be a probability space, T : X → X be a measure preserving transformation,
ξ : X → R be an integrable random variable. By the Individual Ergodic Theorem then there
exists an integrable random variable ξ∗ such that the following conditions are satisfied (see [14]):

(i) E(ξ) = E(ξ∗),
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(ii) lim
n→∞

1
n

n−1∑
i=0

(ξ ◦ T i) = ξ∗ P -almost everywhere,

(iii) ξ∗ = ξ∗ ◦ T P -almost everywhere.

By a measure preserving transformation we understand a mapping T : X → X such that A ∈ σ

implies T−1(A) ∈ σ and P
(
T−1(A)

)
= P (A)).

In the paper [7], we generalized the first two properties (i) and (ii) of the Individual Ergodic
Theorem with respect to an intuitionistic fuzzy state, see the theorem below.

Theorem 1. (Individual Ergodic Theorem) Let (F , ∗) be a family of IF-events with product, m
be an IF-state. Let x be an integrable IF-observable and τ be an m-preserving transformation.
Then there exists an integrable IF-observable x⋆ such that

(i) E(x) = E(x⋆),

(ii) lim
n→∞

1
n

n−1∑
i=0

(τ i ◦ x) = x⋆ m-almost everywhere.

Now we explain the basic notions, which we used in previous theorem. By the family of
intuitionistic fuzzy events on (Ω,S) we understand a set

F = {A = (µA, νA); µA, νA : Ω → [0, 1] are S-measurable and µA + νA ≤ 1Ω},

where Ω ̸= ∅ and S is a σ-algebra of subsets of Ω (see [2, 3, 12]). Recall that the notion of
intuitionistic fuzzy sets was introduced by K. T. Atanassov in 1983 in paper [1].

Next we will work with Łukasiewicz binary operations ⊕ and ⊙ on F , which are given by
these equalities

A⊕B = ((µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω)),

A⊙B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω))

for A = (µA, νA),B = (µB, νB) ∈ F . The partial ordering ≤ on F is defined as follows:

A ≤ B ⇐⇒ µA ≤ µB, νA ≥ νB

and max−min connectives are given by A∨B = (µA∨µB, νA∧νB), A∧B = (µA∧µB, νA∨νB),
see [1–3].

A product operation ∗ on a family of intuitionistic fuzzy events F is defined by

A ∗B =
(
µA · µB, 1Ω − (1Ω − νA) · (1Ω − νB)

)
=
(
µA · µB, νA + νB − νA · νB

)
for each A = (µA, νA) ∈ F , B = (µB, νB) ∈ F and · is a multiplication, see [11]. The product
∗ is satisfying the following four properties for each A,B,C,An,Bn ∈ F , n ∈ N , see [11]:

(i) (1Ω, 0Ω) ∗A = A;

(ii) the operation ∗ is commutative and associative;

(iii) if A⊙B = (0Ω, 1Ω), then C∗(A⊕B) = (C∗A)⊕(C∗B) and (C∗A)⊙(C∗B) = (0Ω, 1Ω);

(iv) if An ↘ (0Ω, 1Ω), Bn ↘ (0Ω, 1Ω), then An ∗Bn ↘ (0Ω, 1Ω).
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In Theorem 1, we discussed an integrable intuitionistic fuzzy observable and an intuitionistic
fuzzy state m. Recall that the notion of intuitionistic fuzzy observable in the intuitionistic fuzzy
space has the same role as the notion of random variable in the classical probability space.
Similarly, the notion of intuitionistic fuzzy state corresponds with the notion of probability.

By an intuitionistic fuzzy state we mean a mapping m : F → [0, 1] that satisfies the
following three conditions for each A,B,An ∈ F , n ∈ N (see [13]):

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;

(ii) if A⊙B = (0Ω, 1Ω) and A,B ∈ F , then m(A⊕B) = m(A) +m(B);

(iii) if An ↗ A (i.e., µAn ↗ µA, νAn ↘ νA), then m(An) ↗ m(A).

Recall that by intuitionistic fuzzy observable we understand each mapping x : B(R) → F
that satisfies the following conditions:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) if A ∩B = ∅, then x(A)⊙ x(B) = (0Ω, 1Ω) and x(A ∪B) = x(A)⊕ x(B);

(iii) if An ↗ A, then x(An) ↗ x(A)

for each A,B,An ∈ B(R), n ∈ N , see [13]. There B(R) is the σ-algebra of the family of all
intervals in R of the form [a, b) = {x ∈ R : a ≤ x < b}, see [14].

We say that an intuitionistic fuzzy observable x is an integrable, if the integral
∫
R
t dmx(t)

exists. In this case we define intuitionistic fuzzy mean value by

E(x) =

∫
R

t dmx(t),

see [6].
In the modification of Individual ergodic theorem for the intuitionistic fuzzy case we work

with m-preserving transformation τ , which is a mapping τ : F → F with following four
conditions:

(i) τ
(
(1Ω, 0Ω)

)
= (1Ω, 0Ω);

(ii) if A⊙B = (0Ω, 1Ω), then τ(A)⊙ τ(B) = (0Ω, 1Ω) and τ(A⊕B) = τ(A)⊕ τ(B);

(iii) if An ↗ A, then τ(An) ↗ τ(A);

(iv) m
(
τ(A) ∗ τ(B)

)
= m(A ∗B)

for each An,A,B ∈ F , n ∈ N , see [7].
Last notion from Theorem 1 is an almost everywhere convergence with respect an intuitionistic

fuzzy state m. In paper [4] we defined m-almost everywhere convergence with help of limes
inferior and limes superior as follows:

A sequence (xn)n of intuitionistic fuzzy observables converges m-almost everywhere to an
intuitionistic fuzzy observable x, if there exist intuitionistic fuzzy observables x, x : B(R) → F
such that m

(
x((−∞, t))

)
= m

(
x((−∞, t))

)
= m

(
x((−∞, t))

)
for every t ∈ R.
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There x = lim sup
n→∞

xn and x = lim inf
n→∞

xn are given by

x((−∞, t)) =
∞∨
p=1

∞∨
k=1

∞∧
n=k

xn

((
−∞, t− 1

p

))
, x((−∞, t)) =

∞∨
p=1

∞∧
k=1

∞∨
n=k

xn

((
−∞, t− 1

p

))
for every t ∈ R.

It is very important to note that for a function of several intuitionistic fuzzy observables
created by the composition of their joint intuitionistic fuzzy observable and a Borel measurable
function, almost everywhere convergence is related to the almost everywhere convergence of
random variables in the Kolmogorov probability space (RN , σ(C), P ), see [5]. The following
theorem discuss about this.

Theorem 2. Let (xn)n be a sequence of intuitionistic fuzzy observables, (ξn)n be the sequence of
corresponding projections, (gn)n be a sequence of Borel measurable functions gn : Rn→R. If the
sequence

(
gn(ξ1, . . . , ξn)

)
n

converges P -almost everywhere, then the sequence
(
gn(x1, . . . , xn)

)
n

converges m-almost everywhere and

m
(
lim sup
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
= m

(
lim inf
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
for each t ∈ R. Moreover

P
(
{u ∈ RN : lim sup

n→∞
gn
(
ξ1(u), . . . , ξn(u)

)
< t}

)
= m

(
lim sup
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
for each t ∈ R.

Remark that C is the family of all sets of the form {(ti)∞i=1 : t1 ∈ A1, . . . , tn ∈ An} and P is
the probability measure given by the equality

P
(
{(ti)∞i=1 : t1 ∈ A1, . . . , tn ∈ An}

)
= m

(
x1(A1) ∗ · · · ∗ xn(An)

)
.

The corresponding projections ξn : RN → R are formulated as ξn
(
(ti)

∞
i=1

)
= tn for n ∈ N ,

see [5, 7].
In Theorem 2, the intuitionistic fuzzy observable gn(x1, . . . , xn) : B(R) → F is defined by

the formula gn(x1, . . . , xn)(A) = hn

(
g−1
n (A)

)
for each A ∈ B(R). Then hn : B(Rn) → F is an

n-dimensional intuitionistic fuzzy observable with property

h(A1 × · · · × An) = x1(A1) ∗ . . . ∗ xn(An)

for each A1, . . . , An ∈ B(R) and it is called the joint intuitionistic fuzzy observable of
intuitionistic fuzzy observables x1, . . . , xn : B(R) → F , see [12].

In the next section, we will generalize the property (iii) from the classical Individual Ergodic
Theorem for an intuitionistic fuzzy space (F ,m). We will use a notation ”IF” as an abbreviation
for “intuitionistic fuzzy” below.
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2 Invariant intuitionistic fuzzy observables

In this section we will study the sequence of IF-observables
(
τn◦x

)∞
1

and the sequence of Cesaro
means (

1

n

n∑
i=1

τ i ◦ x
)∞

1

in IF-space (F ,m). There x : B(R) → F is an integrable IF-observable and τ : F → F is an
m-preserving transformation defined as follows:

Definition 1. Let (F , ∗) be an IF-space with product, m be an IF-state. The m-preserving
transformation is a mapping τ : F → F , which it is satisfying the following properties:

(i) τ
(
(1Ω, 0Ω)

)
= (1Ω, 0Ω);

(ii) if A⊙B = (0Ω, 1Ω), then τ(A)⊙ τ(B) = (0Ω, 1Ω) and τ(A⊕B) = τ(A)⊕ τ(B);

(iii) if An ↗ A, then τ(An) ↗ τ(A);

(iv) τ(A) ∗ τ(B) = τ(A ∗B)

(v) τ(A ∧B) = τ(A) ∧ τ(B)

(vi) m(τ(A)) = m(A)

for each A,B,An ∈ F , n ∈ N .

One can see that this definition of m-preserving transformation must satisfy additional
conditions compared to the preserving transformation used in Theorem 1. So the transformation
from Definition 1 is weaker. In this section, we will work with the m-preserving transformation
formulated in Definition 1.

The convergence of Cesaro means for observables in MV-algebras and in fuzzy quantum
spaces was studied by B. Riečan and M. Jurečková in the papers [9, 10]. They showed that in
both spaces the limit of the sequence of Cesaro means is invariantly observable. In this section
we will extend this result for the IF-space (F , ∗).

Theorem 3. Let (F , ∗) be an IF-space with product, m be an IF-state. Let x be an integrable
IF-observable and τ be an m-preserving transformation. Put for n ∈ N

ξn =
1

n

n−1∑
i=0

ξ1 ◦ T i and yn =
1

n

n−1∑
i=0

τ i ◦ x.

The sequence (yn)∞1 of IF-observables converges m-almost everywhere to an integrable IF-observable
x⋆ and

P
(
(ξ⋆)−1

(
(−∞, t)

))
= m

(
x⋆
(
(−∞, t)

)
for each t ∈ R. There ξ⋆ = lim

n→∞
ξn P-almost everywhere and T : RN → RN is the shift given

by T ((tn)n) = (sn)n, sn = tn+1, n ∈ N .
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Proof. By Theorem 1 we have that the sequence of IF-observables (yn)
∞
1 converges m-almost

everywhere to the integrable IF-observable x⋆. Moreover from Theorem 2 we obtain that

P
(
(ξ⋆)−1

(
(−∞, t)

))
= m

(
x⋆
(
(−∞, t)

)
for each t ∈ R. Then, from the classical Individual Ergodic Theorem, the sequence of random
variables

(ξn)
∞
1 =

( 1
n

n−1∑
i=0

ξ1 ◦ T i
)∞
1

converges P-almost everywhere to the integrable random variable ξ⋆ and

(yn)
∞
1 =

(
gn(x1, . . . , xn)

)∞
n

=
( 1
n

n−1∑
i=0

τ i ◦ x
)∞
1
, xi = τ i−1 ◦ x

for i = 1, . . . , n, where x⋆ = lim supn→∞ yn = lim supn→∞ gn(x1, . . . , xn) and gn(t1, . . . , tn)

= 1
n

∑n
i=1 ti is a Borel measurable function.

Now we return to the sequence of Cesaro means of IF-observables(
1

n

n∑
i=1

τ i ◦ x
)∞

1

.

Lemma 1. Let ln : B(Rn) → F be the joint IF-observable of IF-observables τ ◦ x, τ 2 ◦ x, . . . ,
τn ◦ x : B(R) → F . Define the IF-observable zn by

zn =
1

n

n∑
i=1

τ i ◦ x, n ∈ N.

Then ln = τ ◦ hn and zn = τ ◦ yn, where hn is the joint IF-observable of IF-observables
x, τ ◦ x, . . . , τn−1 ◦ x : B(R) → F and yn = 1

n

∑n−1
i=0 τ i ◦ x.

Proof. Consider the Borel measurable function gn(t1, . . . , tn) = 1
n

∑n
i=1 ti. Then from the

definition of the function of several IF-observables we have

zn =
1

n

n∑
i=1

τ i ◦ x = ln ◦ g−1
n , yn =

1

n

n−1∑
i=0

τ i ◦ x = hn ◦ g−1
n .

Since ln is the joint IF-observable of IF-observables τ ◦ x, τ 2 ◦ x, . . . , τn ◦ x and hn is the
joint IF-observable of IF-observables x, τ ◦ x, . . . , τn−1 ◦ x, then using the property (iv) of the
m-preserving transformation τ we obtain

ln(A1 × A2 × · · · × An) = τ ◦ x(A1) ∗ τ 2 ◦ x(A2) ∗ · · · ∗ τn ◦ x(An)

= τ
(
x(A1)

)
∗ τ
(
τ ◦ x(A2)

)
∗ · · · ∗ τ

(
τn−1 ◦ x(An)

)
= τ

(
x(A1) ∗ τ ◦ x(A2) ∗ · · · ∗ τn−1 ◦ x(An)

)
= τ

(
hn(A1 × A2 × · · · × An)

)
for each A1 × A2 × · · · × An ∈ B(Rn). Hence ln = τ ◦ hn.
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Moreover we obtain

zn =
1

n

n∑
i=1

τ i ◦ x = ln ◦ g−1
n = τ ◦ hn ◦ g−1

n = τ ◦ yn.

Lemma 2. Let gn(t1, . . . , tn) = 1
n

∑n
i=1 ti be a Borel measurable function, x be an integrable

IF-observable. Put

kn+1(t1, t2, . . . , tn+1) =
1

n

n+1∑
i=2

ti = gn(t2, . . . , tn+1) and zn =
1

n

n∑
i=1

τ i ◦ x,

where τ is an m-preserving transformation. Then zn = hn+1 ◦ k−1
n+1, where hn+1 is a joint

IF-observable of IF-observables xi = τ i−1 ◦ x for i = 1, . . . , n+ 1.

Proof. Consider a projection πn : Rn+1 → Rn given by πn(t1, t2, . . . , tn+1) = (t2, . . . , tn+1).
Then we obtain that kn+1 = gn ◦ πn and, therefore,

hn+1 ◦ k−1
n+1 = hn+1 ◦ (gn ◦ πn)

−1 = hn+1 ◦ π−1
n ◦ g−1

n . (1)

But

hn+1 ◦ π−1
n (A1 × · · · × An) = hn+1(R× A1 × · · · × An)

= x1(R) ∗ x2(A1) ∗ · · · ∗ xn+1(An)

= (1Ω, 0Ω) ∗ x2(A1) ∗ · · · ∗ xn+1(An)

= x2(A1) ∗ · · · ∗ xn+1(An)

= τ ◦ x(A1) ∗ · · · ∗ τn ◦ x(An)

= ln(A1 × · · · × An), (2)

where ln is the joint IF-observable of IF-observables τ i ◦ x, i = 1, . . . , n. Hence, using (1) and
(2), we have

zn =
1

n

n∑
i=1

τ i ◦ x = ln ◦ g−1
n = hn+1 ◦ π−1

n ◦ g−1
n = hn+1 ◦ k−1

n+1.

Theorem 4. Let (F , ∗) be an IF-space with product, m be an IF-state. Let x be an integrable
IF-observable and τ be an m-preserving transformation. Put for n ∈ N

ηn =
1

n

n∑
i=1

ξ1 ◦ T i and zn =
1

n

n∑
i=1

τ i ◦ x.

The sequence (zn)
∞
1 of IF-observables converges m-almost everywhere to an integrable IF-

observable z⋆ and
P
(
(η⋆)−1

(
(−∞, t)

))
= m

(
z⋆
(
(−∞, t)

)
for each t ∈ R and z⋆ = τ ◦ x⋆. There η⋆ = lim

n→∞
ηn P-almost everywhere, x⋆ = lim

n→∞
yn

m-almost everywhere, yn = 1
n

∑n−1
i=0 τ i ◦ x and T : RN → RN is the shift given by T ((tn)n)

= (sn)n, sn = tn+1, n ∈ N .
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Proof. Denote for n ∈ N

ξn =
1

n

n−1∑
i=0

ξ1 ◦ T i, yn =
1

n

n−1∑
i=0

τ i ◦ x, ηn =
1

n

n∑
i=1

ξ1 ◦ T i, zn =
1

n

n∑
i=1

τ i ◦ x.

It is easy to see that

ηn =
1

n

n∑
i=1

ξ1 ◦ T i =
1

n

n∑
i=1

ξ1 ◦ T i−1 ◦ T =
1

n

n−1∑
j=0

ξ1 ◦ T j ◦ T = ξn ◦ T. (3)

By Lemma 1 we have that
zn = τ ◦ yn. (4)

Let x be an integrable IF-observable. Then the first coordinate function ξ1 is an integrable
random variable and by the classical Individual Ergodic Theorem there exists an integrable random
variable ξ⋆ such that P-almost everywhere

ξ⋆ = lim
n→∞

ξn and ξ⋆ = ξ⋆ ◦ T, (5)

where (RN , σ(C), P ) is the corresponding Kolmogorov probability space. Hence, using (3) and
(5), we obtain that P-almost everywhere

lim
n→∞

ηn = lim
n→∞

ξn ◦ T = ξ⋆ ◦ T = ξ⋆, (6)

i.e., there exists an integrable random variable η⋆ = ξ⋆ ◦ T = ξ⋆.
From Theorem 3 we have that the sequence of IF-observables (yn)

∞
1 converges m-almost

everywhere to the integrable IF-observable x⋆, i.e.,

lim
n→∞

yn = x⋆ (7)

and for each t ∈ R

P
(
(ξ⋆)−1

(
(−∞, t)

))
= m

(
x⋆
(
(−∞, t)

))
. (8)

Therefore, using (4), (7) and the property (iii) from Definition 1, we obtain

lim
n→∞

zn = lim
n→∞

τ ◦ yn = τ
(

lim
n→∞

yn

)
= τ ◦ x⋆, (9)

i.e., the sequence of IF-observables (zn)
∞
1 converges m-almost everywhere to an integrable

IF-observable z⋆ = τ ◦ x⋆.
Finally, by (9), (8), (6) and the property (vi) from Definition 1, we have

m
(
z⋆
(
(−∞, t)

))
= m

(
τ ◦ x⋆

(
(−∞, t)

))
= m

(
x⋆
(
(−∞, t)

))
= P

(
(ξ⋆)−1

(
(−∞, t)

))
= P

(
(η⋆)−1

(
(−∞, t)

))
for each t ∈ R.

In paper [8] we defined an almost everywhere coincidence of IF-observables with using
IF-state m. We used two approaches: with and without using an joint IF-observable, see
Definition 2 and Theorem 5.
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Definition 2. Let (F , ∗) be the IF-space with product ∗ and m : F → [0, 1] be an IF-state. We
say that the IF-observables x, y : B(R) → F coincide m-almost everywhere if and only if

m
(
h
(
{(u, v) ∈ R2 ;u = v}

))
= 1,

where h : B(R) → F is the joint IF-observable of IF-observables x, y. We write that x = y

m-almost everywhere.

Theorem 5. Let (F , ∗) be the IF-space with product ∗ and m : F → [0, 1] be an IF-state. Two
IF-observables x, y : B(R) → F coincide m-almost everywhere if and only if

m
(
x
(
(−∞, u)

)
∗ y
(
(u,∞)

))
= 0 and m

(
x
(
(u,∞)

)
∗ y
(
(−∞, u)

))
= 0

for each u ∈ R.

In what follows, we will define the notion of a P-intuitionistic fuzzy observable and will
show that the limit of a sequence of a Cesaro means is an invariant IF-observable for this case of
IF-observables.

Definition 3. An IF-observable x : B(R) → F is called P-intuitionistic fuzzy observable, if
x(C ∩D) ≤ x(C) ∗ x(D) for each C,D ∈ B(R).

Lemma 3. Let x be a P-intuitionistic fuzzy observable and hn be the joint IF-observable of
IF-observables xi = τ i−1 ◦ x for i = 1, . . . , n. Then hn(C ∩ D) ≤ hn(C) ∗ hn(D) for each
C,D ∈ B(Rn).

Proof. Let x be a P-intuitionistic fuzzy observable. Then by Definition 3 we have

x(C ∩D) ≤ x(C) ∗ x(D)

for each C,D ∈ B(R).
Denote xi = τ i−1 ◦ x for i = 1, . . . , n. Now we show that x2 = τ ◦ x is a P-intuitionistic

fuzzy observable. Really, using the property (iv) from Definition 1, we obtain

τ ◦ x(C ∩D) = τ
(
x(C ∩D)

)
≤ τ

(
x(C) ∗ x(D)

)
= τ
(
x(C)

)
∗ τ
(
x(D)

)
= τ ◦ x(C) ∗ τ ◦ x(D).

Such xi = τ ◦xi−1 and xi−1 is a P-intuitionistic fuzzy observable, then by mathematical induction
we have that xi = τ i−1 ◦ x are P-intuitionistic fuzzy observables for i = 1, . . . , n.

Put C = C1×· · ·×Cn and D = D1×· · ·×Dn, then C ∩D = C1∩D1×· · ·×Cn∩Dn. Let
hn be the joint IF-observable of IF-observables xi = τ i−1◦x for i = 1, . . . , n. Since xi = τ i−1◦x
are P-intuitionistic fuzzy observables for i = 1, . . . , n, so for each C,D ∈ B(Rn)

hn(C ∩D) = hn(C1 ∩D1 × C2 ∩D2 × · · · × Cn ∩Dn)

= x1(C1 ∩D1) ∗ x2(C2 ∩D2) ∗ · · · ∗ xn(Cn ∩Dn)

= x(C1 ∩D1) ∗ τ ◦ x(C2 ∩D2) ∗ · · · ∗ τn−1 ◦ x(Cn ∩Dn)

≤ x(C1) ∗ x(D1) ∗ τ ◦ x(C2) ∗ τ ◦ x(D2) ∗ · · · ∗ τn−1 ◦ x(Cn) ∗ τn−1 ◦ x(Dn)

= x(C1) ∗ τ ◦ x(C2) ∗ · · · ∗ τn−1 ◦ x(Cn) ∗ x(D1) ∗ τ ◦ x(D2) ∗ · · · ∗ τn−1 ◦ x(Dn)

= x1(C1) ∗ x2(C2) ∗ · · · ∗ xn(Cn) ∗ x1(D1) ∗ x2(D2) ∗ · · · ∗ xn(Dn)

= hn(C1 × · · · × Cn) ∗ hn(D1 × · · · ×Dn) = hn(C) ∗ hn(D),

i.e., hn is a P-intuitionistic fuzzy observable.
9



Theorem 6. Let (F , ∗,m) be a IF-space with product and with an IF-state m. Let x be an
integrable P-intuitionistic fuzzy observable and τ be an m-preserving transformation. Let x⋆, z⋆

be the IF-observables such that z⋆ = τ ◦ x⋆, x⋆ = lim
n→∞

1
n

∑n−1
i=0 τ i ◦ x m-almost everywhere,

z⋆ = lim
n→∞

1
n

∑n
i=1 τ

i ◦ x m-almost everywhere. Then for each t ∈ R it holds

m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(t,∞)

))
= 0 and m

(
x⋆
(
(t,∞)

)
∗ z⋆

(
(−∞, t)

))
= 0

i.e., x⋆ = τ ◦ x⋆ m-almost everywhere.

Proof. First we will prove that m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(t,∞)

))
= 0.

It is easy to see that z⋆
(
(t,∞)

)
=
∨∞

n=1 z
⋆
(
[t+ 1

n
,∞)

)
, hence

m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(t,∞)

))
= m

(
x⋆
(
(−∞, t)

)
∗

∞∨
n=1

z⋆
([

t+
1

n
,∞
)))

.

Denote t + 1
n
= s. We will prove that m

(
x⋆
(
(−∞, t)

)
∗ z⋆

(
[s,∞)

))
= 0 for t < s. Such

(−∞, s)∪ [s,∞) = R and (−∞, s)∩ [s,∞) = ∅, then using property (ii) of IF-observables and
(iii) property of IF-product we obtain

x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s) ∪ [s,∞)

)
= x⋆

(
(−∞, t)

)
∗ z⋆(R)

x⋆
(
(−∞, t)

)
∗
(
z⋆
(
(−∞, s)

)
⊕ z⋆

(
[s,∞)

))
= x⋆

(
(−∞, t)

)
∗ (0Ω, 1Ω)(

x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s)

))
⊕
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
[s,∞)

))
= x⋆

(
(−∞, t)

)
and (

x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s)

))
⊙
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
[s,∞)

))
= (0Ω, 1Ω).

Hence, from property (ii) of the IF-state we have

m

((
x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s)

))
⊕
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
[s,∞)

)))
= m

(
x⋆
(
(−∞, t)

))
,

m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s)

))
+m

(
x⋆
(
(−∞, t)

)
∗ z⋆

(
[s,∞)

))
= m

(
x⋆
(
(−∞, t)

))
.

Therefore

m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
[s,∞)

))
= m

(
x⋆
(
(−∞, t)

))
−m

(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s)

))
.

Let x be an integrable P-intuitionistic fuzzy observable. Then the first coordinate function
ξ1 is an integrable random variable and by the classical Individual Ergodic Theorem there exist
integrable random variables ξ⋆, η⋆ such that P-almost everywhere

ξ⋆ = lim
n→∞

ξn, η⋆ = lim
n→∞

ηn, ξ⋆ = ξ⋆ ◦ T = η⋆,

where ξn = 1
n

∑n−1
i=0 ξ1 ◦ T i, ηn = 1

n

∑n
i=1 ξ1 ◦ T i and (RN , σ(C), P ) is the corresponding

Kolmogorov probability space. For this reason

P
(
(ξ⋆)−1

(
(−∞, t)

)
∩ (η⋆)−1

(
[s,∞)

))
= 0. (10)
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From Theorem 3 and Theorem 4 we have that

m
(
x⋆
(
(−∞, t)

))
= P

(
(ξ⋆)−1

(
(−∞, t)

))
(11)

and m-almost everywhere

x⋆ = lim
n→∞

ξn, ξn =
1

n

n−1∑
i=0

τ i ◦ x, z⋆ = lim
n→∞

zn, zn =
1

n

n∑
i=1

τ i ◦ x.

But

x⋆
(
(−∞, t)

)
= y((−∞, t)) =

∞∨
p=1

∞∨
k=1

∞∧
n=k

yn

((
−∞, t− 1

p

))
,

z⋆
(
(−∞, s)

)
= z((−∞, s)) =

∞∨
q=1

∞∨
l=1

∞∧
m=l

zm

((
−∞, s− 1

q

))
,

hence

m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s)

))
= m

(
∞∨
p=1

∞∨
k=1

∞∧
n=k

yn

((
−∞, t− 1

p

))
∗

∞∨
q=1

∞∨
l=1

∞∧
m=l

zm

((
−∞, s− 1

q

)))

= lim
p→∞

lim
k→∞

lim
i→∞

lim
q→∞

lim
l→∞

lim
j→∞

m

(
k+i∧
n=k

yn

((
−∞, t− 1

p

))
∗

l+j∧
m=l

zm

((
−∞, s− 1

q

)))
.

From Lemma 2 we have

m

(
k+i∧
n=k

yn

((
−∞, t− 1

p

))
∗

l+j∧
m=l

zm

((
−∞, s− 1

q

)))

= m

(
k+i∧
n=k

hn ◦ g−1
n

((
−∞, t− 1

p

))
∗

l+j∧
m=l

hm+1 ◦ k−1
m+1

((
−∞, s− 1

q

)))
.

Denote An = π−1
ω,n ◦g−1

n

((
−∞, t− 1

p

))
, Bm = π−1

ω,m+1 ◦g−1
m

((
−∞, s− 1

q

))
, where ω ≥ k+ i,

ω ≥ l + j and t, s, p, q are constants. Therefore,

m

(
k+i∧
n=k

yn

((
−∞, t− 1

p

))
∗

l+j∧
m=l

zm

((
−∞, s− 1

q

)))
= m

(
k+i∧
n=k

hω(An) ∗
l+j∧
m=l

hω(Bm)

)
.

Using the monotonicity of the joint IF-observable hω we obtain for n = k, . . . , k + i and for
m = l, . . . , l + j

hω(An) ≥ hω

(
k+i⋂
n=k

An

)
, hω(Bm) ≥ hω

(
l+j⋂
m=l

Bm

)
,

hence
k+i∧
n=k

hω(An) ≥ hω

(
k+i⋂
n=k

An

)
,

l+j∧
m=l

hω(Bm) ≥ hω

(
l+j⋂
m=l

Bm

)
. (12)
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From (12) and Lemma 3 it follows that

k+i∧
n=k

hω(An) ∗
l+j∧
m=l

hω(Bm) ≥ hω

(
k+i⋂
n=k

An

)
∗ hω

(
l+j⋂
m=l

Bm

)

≥ hω

(( k+i⋂
n=k

An

)
∩
( l+j⋂

m=l

Bm

))
and therefore

m

(
k+i∧
n=k

yn

((
−∞, t− 1

p

))
∗

l+j∧
m=l

zm

((
−∞, s− 1

q

)))

= m

(
k+i∧
n=k

hω(An) ∗
l+j∧
m=l

hω(Bm)

)
≥ m

(
hω

(( k+i⋂
n=k

An

)
∩
( l+j⋂

m=l

Bm

)))

= P

(
π−1
ω

(( k+i⋂
n=k

An

)
∩
( l+j⋂

m=l

Bm

)))

= P

(
k+i⋂
n=k

ξ−1
n

((
−∞, t− 1

p

))
∩

l+j⋂
m=l

η−1
m

((
−∞, s− 1

q

)))
.

For this reason, we obtain

m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s)

))
= lim

p→∞
lim
k→∞

lim
i→∞

lim
q→∞

lim
l→∞

lim
j→∞

m

(
k+i∧
n=k

yn

((
−∞, t− 1

p

))
∗

l+j∧
m=l

zm

((
−∞, s− 1

q

)))

≥ lim
p→∞

lim
k→∞

lim
i→∞

lim
q→∞

lim
l→∞

lim
j→∞

P

(
k+i⋂
n=k

ξ−1
n

((
−∞, t− 1

p

))
∩

l+j⋂
m=l

η−1
m

((
−∞, s− 1

q

)))

= P

(
∞⋃
p=1

∞⋃
k=1

∞⋂
n=k

ξ−1
n

((
−∞, t− 1

p

))
∩

∞⋃
q=1

∞⋃
l=1

∞⋂
m=l

η−1
m

((
−∞, s− 1

q

)))
= P

(
(ξ⋆)−1

(
(−∞, t)

)
∩ (η⋆)−1

(
(−∞, s)

))
. (13)

Finally, using (11), (13) and (10), we have

m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
[s,∞)

))
= m

(
x⋆
(
(−∞, t)

))
−m

(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(−∞, s)

))
≤ P

(
(ξ⋆)−1

(
(−∞, t)

))
−P

(
(ξ⋆)−1

(
(−∞, t)

)
∩(η⋆)−1

(
(−∞, s)

))
= P

(
(ξ⋆)−1

(
(−∞, t)

)
∩ (η⋆)−1

(
[s,∞)

))
= 0

and hence

m
(
x⋆
(
(−∞, t)

)
∗ z⋆

(
(t,∞)

))
= m

(
x⋆
(
(−∞, t)

)
∗

∞∨
n=1

z⋆
([

t+
1

n
,∞
)))

= 0.

Similarly we can prove that m
(
x⋆
(
(t,∞)

)
∗ z⋆
(
(−∞, t)

))
= 0. Therefore x⋆ = z⋆ = τ ◦ x⋆

m-almost everywhere.
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3 Conclusion

The article deals with the invariance of an intuitionistic fuzzy observable, which is the limit
of Cesaro means of intuitionistic fuzzy observables called P-intuitionistic fuzzy observables. We
can thus formulate a modification of the Individual Ergodic Theorem for intuitionistic fuzzy space
with product and with intuitionistic fuzzy state m as follows:

Theorem 7. (Modified Individual Ergodic Theorem). Let (F , ∗) be a IF-space with product, m
be an IF-state. Let x be an integrable P-intuitionistic fuzzy observable and τ be an m-preserving
transformation. Then there exists an integrable P-intuitionistic fuzzy observable x⋆ such that

(i) E(x) = E(x⋆),

(ii) lim
n→∞

1
n

n−1∑
i=0

(τ i ◦ x) = x⋆ m-almost everywhere,

(iii) x⋆ = τ ◦ x⋆ m-almost everywhere.

The proof of Theorem 7 follows from Theorem 1 and Theorem 6.
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