As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:Intuitionistic fuzzy interpretation of a classical formula

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 23:03, 27 November 2025 by Vassia Atanassova (talk | contribs)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/4/427-440
Title of paper: Intuitionistic fuzzy interpretation of a classical formula
Author(s):
Krassimir Atanassov     0000-0001-5625-071X
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
krat@bas.bgk.t.atanassov@gmail.com
Nora Angelova     0000-0003-2697-9766
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
noraa@fmi.uni-sofia.bg
Janusz Kacprzyk     0000-0003-4187-5877
System Research Institute, Polish Academy of Sciences, Newelska, 6, 01-447, Warsaw, Poland
janusz.kacprzyk@ibspan.waw.pl
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 4, pages 427–440
DOI: https://doi.org/10.7546/nifs.2025.31.4.427-440
Download:  PDF (179  Kb, File info)
Abstract: The formula [math]\displaystyle{ \neg A = (A \rightarrow ((A \rightarrow A) \wedge \neg (A \rightarrow A))) }[/math] is a tautology in the classical propositional logic. In this paper, we determine all intuitionistic fuzzy implications that satisfy this formula together with the classical intuitionistic fuzzy negation or with the negation generated by this implication
Keywords: Intuitionistic fuzzy implication, Intuitionistic fuzzy negation, Tautology.
AMS Classification: 03E72.
References:
  1. Angelova, N., & Atanassov, K. (2021). Research on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 27(2), 20–93.
  2. Angelova, N., Atanassov, K., & Atanassova, V. (2022). Research on intuitionistic fuzzy implications. Part 2. Notes on Intuitionistic Fuzzy Sets, 28(2), 172–192.
  3. Angelova, N., Atanassov, K., & Atanassova, V. (2023). Research on intuitionistic fuzzy implications. Part 3. Notes on Intuitionistic Fuzzy Sets, 29(4), 365–370.
  4. Angelova, N., Atanassov, K., & Atanassova, V. (2024). Research on intuitionistic fuzzy implications. Part 4. Notes on Intuitionistic Fuzzy Sets, 30(1), 1–8.
  5. Angelova, N., Čunderlíková, K., Szmidt, E., & Atanassov, K. (2022). Intuitionistic fuzzy interpretations of formula (A → B) → ((¬A → B) → B). Notes on Intuitionistic Fuzzy Sets, 28(4), 428-–435.
  6. Atanassov, K. (1988). Two variants of intuitionistic fuzzy propositional calculus. Preprint. IM-MFAIS-5-88, Sofia;. Reprinted: International Journal Bioautomation, 2016, 20(S1), S17–S26.
  7. Atanassov, K. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
  8. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  9. Atanassov, K., Szmidt, E., Kacprzyk, J. & Angelova, N. (2019) Intuitionistic fuzzy implications revisited. Part 1. Notes on Intuitionistic Fuzzy Sets, 25(3), 71-–78.
  10. Atanassova, L. (2013). On the intuitionistic fuzzy form of the classical implication (A → B) ∨ (B → A). Notes on Intuitionistic Fuzzy Sets, 19(4), 15-—18.
  11. Atanassova, L. (2014). Remark on the intuitionistic fuzzy forms of two classical logic axioms. Part 1. Annual of the “Informatics” Section, Union of Scientists in Bulgaria, 7, 24–27.
  12. Atanassova, L. (2014). Remark on the intuitionistic fuzzy forms of two classical logic axioms. Part 2. Notes on Intuitionistic Fuzzy Sets, 20(4), 10–13.
  13. Michalíková, A., Szmidt, E., & Vassilev, P. (2021). Modifications_of_Łukasiewicz's_intuitionistic_fuzzy_implication. Notes on Intuitionistic Fuzzy Sets, 27(3), 32–39.
  14. Nakamatsu, K. (2008). The paraconsistent annotated logic program EVALPSN and its application. In: Fulcher, J., & Jain, L. (Eds.). Computational Intelligence: A Compendium. Springer, Berlin, 233–306.
  15. Vassilev, P., Ribagin, S., & Kacprzyk, J. (2018). A remark on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 24(2), 1–7.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.