As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On separation axioms in temporal intuitionistic fuzzy Šostak topology

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 11:07, 29 August 2024 by Vassia Atanassova (talk | contribs) (Text replacement - ""Notes on IFS", Volume" to ""Notes on Intuitionistic Fuzzy Sets", Volume")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/23/1/21-30
Title of paper: On separation axioms in temporal intuitionistic fuzzy Šostak topology
Author(s):
Fatih Kutlu
Department of Mathematics, Yüzüncü Yıl University, Van, Turkey
fatihkutlu@yyu.edu.tr
Presented at: 4th International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference, 3–7 May 2017, Mersin, Turkey
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 1, pages 21—30
Download:  PDF (157 Kb  Kb, File info)
Abstract: In this paper, the concepts of temporal and overall intuitionistic fuzzy point are defined and some properties of theirs investigated. Also (αt0, β t0) – Ti (i = 0, 1, 2) temporal and (αt, βt) – Ti (i = 0, 1, 2) overall separation axioms are defined for temporal intuitionistic fuzzy topology in Šostak sense.
Keywords: Temporal intuitionistic fuzzy sets, Temporal intuitionistic fuzzy topology, Temporal intuitionistic fuzzy point, Separation axioms, Homeomorphism
AMS Classification: 47S40, 03E72.
References:
  1. Atanassov, K. T. (1991). Temporal intuitionistic fuzzy sets. Comptes Rendus de l’Academie Bulgare, 44(7), 5–7.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
  3. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  4. Chang, C. L. (1968). Fuzzy topological spaces. J. Math Ana. Appl. 24, 182–190.
  5. Çoker, D., & Demirci, M. (1996). An introduction to intuitionistic topological spaces in Šostak’s sense. BUSEFAL 67, 67–76.
  6. Deng, Z. (1982). Fuzzy pseudo-metric spaces. Journal of Mathematical Analysis and Applications 86(1), 74–95.
  7. Ibedou, I. (2016). Graded fuzzy topological spaces. Cogent mathematics, 3:1138574, 13 pages.
  8. Kutlu, F., Atan, Ö., & Bilgin, T. (2016). Distance measure, similarity measure, entropy and inclusion measure for temporal intuitionistic fuzzy sets. Proceedings of IFSCOM’2016, Book (1), 130–148.
  9. Kutlu, F. & Bilgin, T. (2015). Temporal intuitionistic fuzzy topology in Šostak’s sense. Notes on Intuitionistic Fuzzy Sets, 21(2), 63–70.
  10. Kutlu, F., Ramadan, A. A., & Bilgin, T. (2016). On compactness in temporal intuitionistic fuzzy Šostak topology. Notes on Intuitionistic Fuzzy Sets, 22(5), 46–62.
  11. Lee, E. P. (2004). Semiopen sets on intuitionistic fuzzy topological spaces in Šostak's sense. J. Fuzzy Logic and Intelligent Systems, 14(2), 234–23.
  12. Singh, A. K. & Srivastava, R. (2012). Separation axioms in intuitionistic fuzzy topological spaces. Advances in Fuzzy Systems, Article ID 604396, 7 pages, doi:10.1155/2012/604396.
  13. Singh, A. (2009). On T1 separation axioms in I-fuzzy topological spaces. Applied math. Sci 3(49), 2421–2425.
  14. Šostak, A. (1985). On a fuzzy topological structure. Rend Circ. Mat. Palermo Supp. 11, 89–103.
  15. Yılmaz, S. & Çuvalcıoğlu, G. (2014). On level operators for temporal intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets 20(2), 6–15.
  16. Yue, Y., & Fang, J. (2006). On separation axioms in I-fuzzy topological spaces. Fuzzy Sets and Systems, 157(6), 780–793.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.