As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Modal operator Fα,β on intuitionistic fuzzy BG-algebras

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 18:37, 28 August 2024 by Vassia Atanassova (talk | contribs) (Text replacement - ""Notes on IFS", Volume" to ""Notes on Intuitionistic Fuzzy Sets", Volume")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/1/78-88
Title of paper: Modal operator Fα,β on intuitionistic fuzzy BG-algebras
Author(s):
S. R. Barbhuiya
Department of Mathematics, Srikishan Sarda College, Hailakandi, 788151, Assam, India
saidurbarbhuiya@gmail.com
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 1, pages 78—88
Download:  PDF (190  Kb, File info)
Abstract: In this paper we study the effect of modal operator(s) in intuitionistic fuzzy BG-algebras and the effect of modal operator(s) on intuitionistic fuzzy BG-algebras under homomorphism and obtained some interesting properties.
Keywords: BG-algebra, Intuitionistic fuzzy set, Modal operator, Subalgebra, Normal subalgebra, Homomorphism.
AMS Classification: 06F35, 03E72, 03G25, 08A72.
References:
  1. Ahn, S. S. & Lee, H. D. (2004) Fuzzy subalgebras of BG-algebras, Comm. Korean Math. Soc. 19(2), 243–251.
  2. Atanassov, K. T. (2012) On Intuitionistic Fuzzy Sets Theory, Springer-Verlag, Berlin.
  3. Atanassov, K. T. (1983) Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Central Sci. and Techn. Library Bulg. Academy of Sciences).
  4. Atanassov, K. T. (1988) Two operators on intuitionistic fuzzy sets, Comptes Rendus de l’Academie bulgare des Sciences, 41(5), 35–38.
  5. Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
  6. Atanassov, K. T. (1989) More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33(1), 37–45.
  7. Atanassov, K. T. (2004) On the Modal Operators defined over the intuitionistic Fuzzy Sets, Notes on intuitionistic Fuzzy Sets, 10(1), 7–12.
  8. Atanassov, K. T. (2010) On the new intuitionistic fuzzy operator xa,b,c,d,e,f, Notes on intuitionistic Fuzzy Sets, 16(2), 35–38.
  9. Atanassov, K. T. (2003) A new intuitionistic fuzzy modal operator, Notes on intuitionistic Fuzzy Sets, 9(2), 56–60.
  10. Harlenderova, M. & J. R. Olomouc. (2006) Modal Operators on MV-algebra, Mathematica Bohemica, 131(1), 39–48.
  11. Imai, Y. & Iseki, K. (1966) On Axiom systems of Propositional calculi XIV, Proc. Japan Academy, 42, 19–22.
  12. Iseki, K. (1975) On some ideals in BCK-algebras, Math. Seminar Notes, 3, 65–70.
  13. Kim, C. B. & Kim, H. S. (2008) On BG-algebras, Demonstratio Mathematica, 41(3), 497–505.
  14. Murugadas, P., Sriram, S. & Muthuraji, T. (2014) Modal Operators in Intuitionistic Fuzzy Matrices, International Journal of Computer Applications, 90(17), 1–4.
  15. Neggers, J. & Kim, H. S. (2002) on B-algebras, Math.Vensik, 54, 21–29.
  16. Sharma, P. K. (2014) Modal operator F(α,β)-Intuitionistic fuzzy groups, Annals of pure and Applied Mathematics, 7(1), 19–28.
  17. Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.