As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Notes on Intuitionistic Fuzzy Sets/29/1

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search

Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 1.

Journal contents

Number Title Author(s) Pages
1 Level operators over primary interval-valued intuitionistic fuzzy M group G. Prasannavengeteswari, K. Gunasekaran and S. Nandakumar 1—29
2 Norms over Q-intuitionistic fuzzy subgroups of a group Rasul Rasuli 30—45
3 A new intuitionistic fuzzy implication and the negation, conjunctions and disjunctions generated by it Lilija Atanassova 46—55
4 InterCriteria Analysis applied to the Turkish Health and Social Protection datasets Zlatko Yordanov, Veselina Bureva and Cengiz Kahraman 56—64

{{journal-contents/row

number = 5 title =
shortcut
http://ifigenia.org/wiki/issue:nifs/29/1/65-73
Title of paper: On intuitionistic L-fuzzy socle of modules
Author(s):
P. K. Sharma
Post-Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 1, pages 65–73
DOI: https://doi.org/10.7546/nifs.2023.29.1.65-73
Download:  PDF (239  Kb, File info)
Abstract: In this paper we try to study the intuitionistic 𝐿-fuzzy aspects of socle of modules over rings. We demonstrate some properties of a socle of intuitionistic 𝐿-fuzzy submodules and their relations with intuitionistic 𝐿-fuzzy essential submodules and a family of intuitionistic 𝐿-fuzzy complemented submodules of a module. Some related results are also established.
Keywords: Intuitionistic 𝐿-fuzzy submodule, Intuitionistic 𝐿-fuzzy simple submodule, Intuitionistic 𝐿-fuzzy essential submodule, Socle of an intuitionistic 𝐿-fuzzy submodule.
AMS Classification: 08A72, 03F55, 16D10, 16D60.
References:
  1. Anderson, F. W., & Fuller, K. R. (1992). Rings and Categories of Modules. 2nd edition. Springer Verlag.
  2. Atanassov, K. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  3. Atanassov, K., & Stoeva, S. (1984). Intuitionistic 𝐿-fuzzy sets. Cybernetics and System Research, Vol. 2. Elsevier Sci. Publ., Amsterdam, 539–540.
  4. Birkhoff, G. (1967). Lattice Theory. American Mathematical Society, Col. Pub., Providence.
  5. Deschrijver, G., & Kerre, E. E. (2003). On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems, 133, 227–235.
  6. Goguen, J. (1967). 𝐿-fuzzy sets. Journal of Mathematical Analysis and Applications, 18, 145–174.
  7. Kanchan, Sharma, P. K., & Pathania, D. S. (2020). Intuitionistic 𝐿-fuzzy submodules. Advances in Fuzzy Sets and Systems, 25(2), 123–142.
  8. Kasch, F. (1982). Modules and Rings. Academic Press, London.
  9. Meena, K., & Thomas, K. V. (2011). Intuitionistic 𝐿-fuzzy subrings. International Mathematics Forum, 6(52), 2561–2572.
  10. Palaniappan, N., Naganathan, S., & Arjunan, K. (2009). A study on intuitionistic 𝐿-fuzzy subgroups. Applied Mathematics Sciences, 3(53), 2619–2624.
  11. Sharma, P. K., & Kanchan. (2018). On intuitionistic 𝐿-fuzzy prime submodules. Annals of Fuzzy Mathematics and Informatics, 16(1), 87–97.
  12. Sharma, P. K., & Kanchan. (2020). On intuitionistic 𝐿-fuzzy primary and 𝑃-primary submodules. Malaya Journal of Matematik, 8(4), 1417–1426.
  13. Sharma, P. K., Kanchan, & Pathania, D. S. (2021). Intuitionistic 𝐿-fuzzy essential and closed submodules. Notes on Intuitionistic Fuzzy Sets, 27(4), 44–54.
  14. Sharma, P. K., Kanchan, & Pathania, D. S. (2021). Simple and semi-simple intuitionistic 𝐿-fuzzy modules. 7th International Conference on IFS and Contemporary Mathematics, May 25–29, 2021, Turkey.
  15. Wang, G. J., & He, Y. Y. (2000). Intuitionistic fuzzy sets and 𝐿-fuzzy sets. Fuzzy Sets and Systems, 110, 271–274.
  16. Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.


6 TBC TBC TBC


This issue of Int. Journal "Notes on Intuitionistic Fuzzy Sets" is published with the financial support of the Bulgarian National Science Fund, Grant Ref. No. KP-06-NP4-22/01.12.2022.