As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic L-fuzzy essential and closed submodules

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 18:28, 21 December 2021 by Vassia Atanassova (talk | contribs) (Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/27/4/44-54
Title of paper: Intuitionistic L-fuzzy essential and closed submodules
Author(s):
P. K. Sharma
P.G. department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Kanchan
IKG Punjab Technical University, Jalandhar, Punjab, India
kanchan4usoh@gmail.com
Gagandeep Kaur
Department of Applied Science, GNDEC, Ludhiana, Punjab, India
loteygagandeepkaur@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 4, pages 44-54
DOI: https://doi.org/10.7546/nifs.2021.27.4.44-54
Download:  PDF (222  Kb, File info)
Abstract: Let R be a commutative ring with identity and M be an R-module. An intuitionistic L-fuzzy submodule (ILFSM) C of an intuitionistic L-fuzzy module A of R-module M, is called an intuitionistic L-fuzzy essential submodule in A, if CBχ{θ} for any non-trivial ILFSM B of A. In this case we say that A is an essential extension of C. Also, if C has no proper essential extension in A, then C is called an intuitionistic L-fuzzy closed submodule in A. Further, for ILFSMs B, C of A, C is called complement of B in A if C is maximal with the property that BC = χ{θ}. We study these mentioned notations which are generalization of the notions of essential submodule, closed submodule and complement of a submodule in the intuitionistic L-fuzzy module theory. We prove many basic properties of both these concepts.
Keywords: Intuitionistic L-fuzzy submodule, Intuitionistic L-fuzzy essential submodule, Intuitionistic L-fuzzy closed submodule.
AMS Classification: 03F55, 16D10, 08A72.
References:
  1. Anderson, F. W., & Fuller, K. R. (1992). Rings and Categories of Modules. Second edition, Springer Verlag.
  2. Atanassov, K., & Stoeva, S. (1984). Intuitionistic L-fuzzy sets. Cybernetics and System Research, Vol. 2, Elsevier Sci. Publ. Amsterdam, 539–540.
  3. Birkhoff, G. (1967). Lattice Theory. American Math. Soci. Coll. Publ., Rhode Island.
  4. Deschrijver, G., & Kerre, E. E. (2003). On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems, 133, 227–235.
  5. Goguen, J. (1967). L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18, 145–174.
  6. Isaac, P. (2007). Essential L-fuzzy submodules of an L-module. Journal of Fuzzy Mathematics, 15(2), 355–362.
  7. Kanchan, Sharma, P. K., & Pathania, D. S. (2020). Intuitionistic L-fuzzy submodules. Advances in Fuzzy Sets and Systems, 25(2), 123–142.
  8. Kasch, F. (1982). Modules and Rings. Academic Press, London.
  9. Marhon, H. K., & Khalaf, H. Y. (2020). Some Properties of the Essential Fuzzy and Closed Fuzzy Submodules. Iraqi Journal of Science, 61(4), 890–897.
  10. Meena, K., & Thomas, K. V. (2011). Intuitionistic L-fuzzy Subrings. International Mathematics Forum, 6(52), 2561–2572.
  11. Palaniappan, N., Naganathan, S., & Arjunan, K. (2009). A study on Intuitionistic L-fuzzy Subgroups. Applied Mathematics Sciences, 3(53), 2619–2624.
  12. Sharma, P. K., & Kanchan. (2018). On intuitionistic L-fuzzy prime submodules. Annals of Fuzzy Mathematics and Informatics, 16(1), 87–97.
  13. Sharma, P. K., & Kanchan. (2020). On intuitionistic L-fuzzy primary and P-primary submodules. Malaya Journal of Matematik, 8(4), 1417–1426.
  14. Wang, G. J., & He, Y. Y. (2000). Intuitionistic fuzzy sets and L-fuzzy sets. Fuzzy Sets and Systems, 110, 271–274.
  15. Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.