Title of paper:
|
Basic theorems from extreme value theory for MV-algebras
|
Author(s):
|
Katarína Čunderlíková
|
Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava, Slovakia
|
cunderlikova.lendelova@gmail.com
|
Renáta Bartková
|
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
|
renata.hanesova@gmail.com
|
|
Published in:
|
"Issues in IFSs and GNs", Volume 14 (2018/19), pages 1-24
|
Download:
|
PDF (175 Kb, File info)
|
Abstract:
|
In the paper the space of observables with respect to MV-algebras is considered. We prove the modification of the Fisher-Tippet Gnedenko theorem and the Pickands-Balkema-de Haan theorem for sequence of independent observables in probability MV-algebra. We show that the results for MValgebras can be applied for intuitionistic fuzzy sets and interval valued sets, too.
|
Keywords:
|
MV-algebra, MV-state, Observable, Joint observable, Independence, Fisher-Tippet-Gnedenko theorem, Excess distribution, Maximum domain of attraction, Generalized Pareto distribution, Extreme value theory, Pickands-Balkema-de Haan theorem.
|
References:
|
- Atanassov, K., Intuitionistic Fuzzy sets : Theory and Applications. Physica Verlag, New York, 1999.
- Atanassov, K., On Intuitionistic Fuzzy Sets. Springer, Berlin, 2012.
- Bartková, R., K. Čunderlíková, Fisher-Tippett-Gnedenko theorem for Intuitionistic Fuzzy Events. In: Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Kacprzyk J. et al. eds., Vol. 641, Springer, Cham, 2018, 125–135.
- Bartková, R., K. Čunderlíková, The Pickands-Balkema-de Haan theorem. Notes on Intuitionistic Fuzzy Sets, 24 (2), 2018, 63–75.
- Birkhoff, G., Lattice Theory. Vol. 25 of AMS Colloquium Publications, Providence, Rhode Island, 1973.
- Coles, S., Statistics of Extremes. Springer, 2001.
- Embrechts, P., C. Kluppelberg, T. Mikosch, Modelling Extremal Events: For Insurance and Finance. Springer, Verlag, 1997.
- Gumbel, E. J., Lattice Theory. Columbia University Press, New York, 1958.
- Haan, L., A. Ferreira, Extreme Value Theory: An Introduction. Springer, 2006.
- Král, P., B. Riečan, Probabilty on Interval Valued Events. In: Proceeding of Eleventh Int. Workshop on GNs and Second Int. Workshop on GNs, IFSs, KE, London, 9-10 July, 2010, 43–47.
- Michalíková, A., B. Riečan, On some methods of study of states on interval valued fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 24 (4), 2018, 5–12.
- Riečan, B., Probability theory on intuitionistic fuzzy events. In: Algebraic and Proof-theoretic aspects of Non-classical Logics. Papers in honour of Daniele Mundici’s 60th birthday. Lecture Notes in Computer Science, Vol. 4460, 2007.
- Riečan, B., D. Mundici, Probability on MV-algebras. Handbook of Measure Theory (E. Pap. ed.), Elsevier Science B.V., Amsterdam, 2002.
- Riečan, B., T. Neubrunn, Integral, Measure and Ordering. Kluwer, Dordrecht, 1997.
- Zadeh, L. A., The concept of linguistic variable and its application to approximate reasoning I. Information Sciences, 8 (3).
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|