As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Norms over bifuzzy bi-ideals with operators in semigroups

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 14:27, 22 April 2019 by Peter Vassilev (talk | contribs) (Created page with "{{PAGENAME}} {{PAGENAME}} Category:Publications in N...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/25/1/1-11
Title of paper: Norms over bifuzzy bi-ideals with operators in semigroups
Author(s):
Rasul Rasuli
Department of Mathematics, Payame Noor University, Tehran, Iran
rasulirasul@yahoo.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 25 (2019), Number 1, pages 1–11
DOI: https://doi.org/10.7546/nifs.2019.25.1.1-11
Download:  PDF (185 Kb  Kb, File info)
Abstract: In this paper, by using norms (T and C) we introduce the concepts of Ω-bifuzzy subsemigroups, Ω-bifuzzy ideals and Ω-bifuzzy bi-ideals of semigroup S and consider some of their properties and structured characteristics.
Keywords: Theory of groups, Ideals, Norms, Intuitionistic mathematics, Fuzzy set theory, Lattice.
AMS Classification: 05B10, 06B10, 03B45, 03F55, 03E72, 06D50
References:
  1. Abbott, J. C. (1969). Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), 87–96.
  3. Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, 137–142.
  4. Buckley, J. J. & Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets, Springer-Verlag Berlin Heidelberg GmbH.
  5. Dubois, D. & Prade, H. (1988). Fuzzy Sets and Systems, Academic Press, New York.
  6. Gerstenkorn, T. & Manko, J. (1995). Bifuzzy probabilistic sets, Fuzzy Sets and Systems, 71, 207–214.
  7. Hong, S. M., Jun, Y. B. & Meng, J. (1995). Fuzzy interior ideals in semigroups, Indian J. Pure Appl. Math., 26(9), 859–863.
  8. Howie, J. (1995). Fundamentals of Semigroup Theory, London Mathematical Society Monographs. New Series, 12. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York.
  9. Hur, K., Jun, Y. B. & Kim, H. S. (2005). Ω-bifuzzy subsemigroups in semigroups, Honam Math. J., 27(1), 31–41.
  10. Klaua, D. (2010). An early approach toward graded identity and graded membership in set theory, Fuzzy Sets and Systems, 161, 2369–2379.
  11. Kuroki, N. (1982). Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems, 8, 71–79.
  12. Kuroki, N. (1991). On fuzzy semigroups, Inform. Sci., 53, 203–236.
  13. Kuroki, N. (1992). Fuzzy generalized bi-ideals in semigroups, Inform. Sci., 66, 235–243.
  14. Lajos, S. (1972). On generalized bi-ideals in semigroups, Coll. Math. Soc. Janos Bolyai, Algebraic Theory of Semigroups, (G. Pollak, Ed.) North-Holland, 20, 335–340.
  15. Lajos, S. (1972). A note on semilattice of groups, Acta. Sci. Math. (Szeged), 33, 315–317.
  16. Liang, R., Lu, S., Wang, X. Lu, Y., Mandal, V., Patacsil, D. & Kumar, D. (2006). A Fuzzy-Set-Theory-Based Approach to Differential Gene Expression Data Analysis, BMC Bioinformatics, 7 (Suppl 4): S7.
  17. Mo, Z. W. & Wang, X. P. (1993). On pointwise depiction of fuzzy regularity of semigroups, Inform. Sci., 74, 265–274.
  18. Petrich, M. (1973). Introduction to Semigroups, Columbus, Ohio.
  19. Rasuli, R. (2016). Fuzzy Ideals of Subtraction Semigroups with Respect to a t-norm and a t-conorm, The Journal of Fuzzy Mathematics Los Angeles, 24(4), 881–892.
  20. Rasuli, R. (2016). Fuzzy modules over a t-norm, Int. J. Open Problems Compt. Math., 9(3), 12–18.
  21. Rasuli, R. (2016). Fuzzy Subrings over a t-norm, The Journal of Fuzzy Mathematics Los Angeles, 24(4), 995–1000.
  22. Rasuli, R. (2016). Norms over intuitionistic fuzzy subrings and ideals of a ring, Notes on Intuitionistic Fuzzy Sets, 22(5), 72–83.
  23. Samhan, M. A. (1993). Fuzzy congruences on semigroups, Inform. Sci., 74, 165–175.
  24. Wang, X. P. & Liu, W. J. (1993). Fuzzy regular subsemigroups in semigroups, Inform. Sci., 68, 225–231.
  25. Zadeh, L. A. (1965). Fuzzy sets, Inform. Control., 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.