Title of paper:
|
Solution of n-th order intuitionistic fuzzy differential equation by variational iteration method
|
Author(s):
|
Said Melliani
|
Department of Mathematics, Sultan Moulay Slimane University, LMACS, Laboratoire de Math´ematiques Appliqu´ees & Calcul Scientifique, PO Box 523, 23000 Beni Mellal, Morocco
|
saidmelliani@gmail.com
|
H. Atti
|
Department of Mathematics, Sultan Moulay Slimane University, LMACS, Laboratoire de Math´ematiques Appliqu´ees & Calcul Scientifique, PO Box 523, 23000 Beni Mellal, Morocco
|
|
B. Ben Amma
|
Department of Mathematics, Sultan Moulay Slimane University, LMACS, Laboratoire de Math´ematiques Appliqu´ees & Calcul Scientifique, PO Box 523, 23000 Beni Mellal, Morocco
|
|
Lalla Saadia Chadli
|
Department of Mathematics, Sultan Moulay Slimane University, LMACS, Laboratoire de Math´ematiques Appliqu´ees & Calcul Scientifique, PO Box 523, 23000 Beni Mellal, Morocco
|
|
|
Presented at:
|
International Conference on Intuitionistic Fuzzy Sets Theory and Applications, 20–22 April 2016, Beni Mellal, Morocco
|
Published in:
|
"Notes on IFS", Volume 24, 2018, Number 3, pages 27—39
|
Download:
|
PDF (194 Kb, File info)
|
Abstract:
|
In this paper, the variational iteration method proposed by Ji-Huan He is applied to solve n-th order intuitionistic fuzzy differential equations with intuitionistic fuzzy initial conditions. Several numerical examples are given to illustrate the efficiency of the presented method.
|
Keywords:
|
Intuitionistic fuzzy number, Intuitionistic fuzzy differential equation, Variational iteration method.
|
AMS Classification:
|
03E72, 34A07.
|
References:
|
- Abbasbandy, S., & Allahviranloo, T. (2002) Numerical solution of fuzzy differential equation by Runge-Kutta method and the intuitionistic treatment, Notes on Intuitionistic Fuzzy Sets, 8(3), 45–53.
- Atanassov, K. (1983) Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), 87–96.
- Atanassov, K. T. (1994) Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 64(2), 159–174.
- Ben Amma, B., Melliani, S., & Chadli, L. S. (2016) Numerical solution of intuitionistic fuzzy differential equations by Euler and Taylor methods, Notes on Intuitionistic Fuzzy Sets, 22 (2), 71–86.
- Ben Amma, B., Melliani, S., & Chadli, L. S., (2016) [[Issue: Numerical solution of intuitionistic fuzzy differential equations by Adams' three order predictor-corrector method|]], Notes on Intuitionistic Fuzzy Sets, 22 (3), 47–69.
- Ben Amma, B. & Chadli, L. S. (2016) Numerical solution of intuitionistic fuzzy differential equations by Runge–Kutta Method of order four, Notes on Intuitionistic Fuzzy Sets, 22 (4), 42–52.
- Ben Amma, B., Melliani, S., & Chadli, L. S. (2018) The Cauchy problem for intuitionistic fuzzy differential equations, Notes on Intuitionistic Fuzzy Sets, 24 (1), 37–47.
- Ben Amma, B., Melliani, S., & Chadli, L. S. (2018) Intuitionistic Fuzzy Functional Differential Equations, Fuzzy Logic in Intelligent System Design: Theory and Applications, P. Melin, O. Castillo, J. Kacprzyk, M. Reformat, W. Melek, Ed. Cham: Springer International Publishing, 335–357.
- De, S. K., Biswas, R. & Roy, A. R. (2001) An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets and Systems, 117, 209–213.
- He, J. H. (1998) Approximate solution of non linear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Engrg., 167, 69–73.
- He, J. H., & Wu, X.-H. (2007) Variational iteration method: New development and applications, Comput. Math. Appl., 54 (78), 881–894.
- He, J.H., Wu, G. C. ,& Austin, F. (2010) The variational iteration method which should be followed, Nonlinear Sci. Lett., A 1, 1–30.
- Li, D. F., & Cheng, C. T. (2002) New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions, Pattern Recognit. Lett., 23, 221–225.
- Li, D. F. (2005) Multiattribute decision making models and methods using intuitionistic fuzzy sets, J.Comput. Syst. Sci., 70, 73–85
- Melliani, S., & Chadli, L. S. (2000) Intuitionistic fuzzy differential equation. Part 1, Notes on Intuitionistic Fuzzy Sets, 6 (2), 37–41.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21 (1), 43–53.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015) Intuitionistic fuzzy fractional equation, Notes on Intuitionistic Fuzzy sets, 21 (4), 76–89.
- Melliani, S., Elomari, M., Atraoui, M., & Chadli, L. S. (2015) Intuitionistic fuzzy differential equation with nonlocal condition, Notes on Intuitionistic Fuzzy sets, 21 (4), 58–68.
- Nirmala, V. (2015) Numerical Approach for Solving Intuitionistic Fuzzy Differential Equation under Generalised Differentiability Concept, Applied Mathematical Sciences, 9 (67), 3337–3346.
- Parimala, V., Rajarajeswari, P., & Nirmala, V. (2017) Numerical Solution of Intuitionistic Fuzzy Differential Equation by Milne’s Predictor-Corrector Method Under Generalised Differentiability, International Journal of Mathematics And its Applications, 5, 45–54.
- Shu, M. H., Cheng, C. H. & Chang, J. R. (2006) Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly, Microelectron. Reliab., 46 (12), 2139–2148.
- Sankar, P. M. & Roy, T. K. (2014) First order homogeneous ordinary differential equation with initial value as triangular intuitionistic fuzzy number, Journal of Uncertainty in Mathematics Science, 2014, 1–17.
- Sankar, P. M., & Roy, T. K., (2015) System of Differential Equation with Initial Value as Triangular Intuitionistic Fuzzy Number and its Application, Int. J. Appl. Comput. Math, 1 (3), 449–474.
- Tatari, M. & Dehghan, M. (2008) On the convergence of He’s variational iteration method, J. Comput. Appl. Math., 207 (1), 121–128.
- Wang, Z., Li, K. W., & Wang, W. (2009) An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights., Information Sciences, 179 (17), 3026–3040.
- Ye, J. (2009) Multicriteria fuzzy decision-making method based on a novel accuracy function under interval valued intuitionistic fuzzy environment, Expert Syst. Applicat., 36, 6899– 6902.
- Zadeh, L.A. (1965) Fuzzy sets, Inf. Control, 8 (3), 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|