As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On generalized double statistical convergence of order α in intuitionistic fuzzy n-normed spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 19:46, 30 December 2016 by Peter Vassilev (talk | contribs)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/4/13-24
Title of paper: On generalized double statistical convergence of order α in intuitionistic fuzzy n-normed spaces
Author(s):
Ekrem Savaş
Department of Mathematics, Istanbul Commerce University, Sutluce-Istanbul, Turkey
ekremsavas@yahoo.com
Presented at: 3rd International Conference on Intuitionistic Fuzzy Sets, 9 Aug – 1 Sep 2016, Mersin, Turkey
Published in: "Notes on IFS", Volume 22, 2016, Number 4, pages 13—24
Download:  PDF (  Kb, File info)
Abstract: In the present paper, we introduce the notion [V, λ]2(I)-summability and ideal λ-double statistical convergence of order α with respect to the intuitionistic fuzzy n-normed (μ,ν). In addition, we present a series of inclusion theorems associated with these new definitions.
Keywords: Ideal, Filter, I-double statistical convergence, Iλ-double statistical convergence order α, [V, λ]2(I)-summability, closed subspace.
AMS Classification: 40G99
References: 260 Kb
  1. Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
  2. Cakalli, H. (2009) A study on statistical convergence, Funct. Anal. Approx. Comput., 1(2), 19–24, MR2662887.
  3. Colak, R. (2010) Statistical convergence of order α, Modern methods in Analysis and its Applications, New Delhi, India, Anamaya Pub., 121–129.
  4. Colak, R., & Bektas, C. A. (2011) λ-statistical convergence of order α, Acta Math. Scientia, 31B(3), 953–959.
  5. Das, P., Savaş, E., & Ghosal, S. Kr. (2011) On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24, 1509–1514.
  6. El Naschie, M. S. (1998) On certainty of Cantorian geometry and two-slit experiment, Chaos, Solitons & Fractals, 9, 517–529.
  7. Fast, H. (1951) Sur la convergence statistique, Colloq. Math., 2, 241–244.
  8. Fridy, J. A. (1985) On statistical convergence, Analysis, 5, 301–313.
  9. Gähler, S. (1965) Lineare 2-normietre räume, Math. Nachr., 28, 1–43.
  10. Gähler, S. (1969) Untersuchungen uber verallgemeinerte m-metrische r¨aume, I, II, III, Math. Nachr., 40, 165–189.
  11. Gunawan, H., & Mashadi, M. (2001) On n-normed spaces, Int. J. Math. Math. Sci., 27, 631–639.
  12. Karakus, S., Demirci, K. & Duman, O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35, 763–769.
  13. Kim, S.S., & Cho, Y.J. (1996) Strict convexity in linear n-normed spaces, Demonst. Math., 29, 739–744.
  14. Malceski, R. (1997) Strong n-convex n-normed spaces, Mat. Bilt., 21, 81–102.
  15. Kostyrko, P., Šalát, T., & Wilczynki, W. (2000–2001) I-convergence, Real Anal. Exchange, 26(2), 669–685.
  16. Kumar, V., & Mursaleen, M. (2011) On (λ, μ)-Statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2), 109–120.
  17. Maio, G. D., & Kocinac, L. D. R. (2008) Statistical convergence in topology, Topology Appl., 156, 28–45.
  18. Misiak, A. (1989) n-inner product spaces, Math. Nachr., 140, 299–319.
  19. Mursaleen, M. (2000) λ-statistical convergence, Math. Slovaca, 50, 111–115.
  20. Mursaleen, M., & Edely, O. H. H. (2003) Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), 223–231.
  21. Mursaleen, M., Mohiuddine, S. A., & Edely, O. H. H. (2009) On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59(2010), 603–611.
  22. Mursaleen, M., & Mohiuddine, S. A. (2009) Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 41, 2414–2421.
  23. Mohiuddine, S. A., & Danish Lohani, Q. M. (2009) On generalized statistical convergence in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 42, 1731–1737.
  24. Park, J. H. (2004) Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22, 1039–1046.
  25. Saadati, R., & Park, J. H. (2006) On the intuitioistic fuzzy topologicial spaces, Chaos Solitons Fractals, 27, 331–344.
  26. Šalát, T. (1980) On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139–150.
  27. Savaş, E. (2011) Pratulananda Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24, 826–830.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.