As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Evolution problem with intuitionistic fuzzy fractional derivative

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 15:56, 1 September 2016 by Peter Vassilev (talk | contribs) (Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/3/80-89
Title of paper: Evolution problem with intuitionistic fuzzy fractional derivative
Author(s):
M. Elomari
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Said Melliani
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
said.melliani@gmail.com
Lalla Saadia Chadli
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Presented at: 20th International Conference on Intuitionistic Fuzzy Sets, 2–3 September 2016, Sofia, Bulgaria
Published in: "Notes on IFS", Volume 22, 2016, Number 3, pages 80—89
Download:  PDF (132  Kb, File info)
Abstract: We introduce the generalized intutionistic fuzzy derivative, this concept used in order to give a generalized intuitionistic fuzzy Caputo fractional derivative. And we descuse the intuitionistic fuzzy fractional evolution problem.
Keywords: Generalized intuitionistic fuzzy Hukuhara difference, Generalized intuitionistic fuzzy derivative, generalized intuitionistic fuzzy Caputo-derivative, intuitionistic fuzzy fractional evolution problem.
AMS Classification: 03E72
References:
  1. Allahviranloo, T., Armand, A. & Gouyandeh, Z. (2014) Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Systems, 26, 1481–1490.
  2. Allahviranloo, T., Armand, A., Gouyandeh, Z., & Ghadiri, H. (2013) Existence and uniqueness of solutions for fuzzy fractional Volterra-Fredholm integro-differential equations, J. Fuzzy Set Valued Analysis, 2013, 1–9.
  3. Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
  4. Brezis, H., & Pazy, A. (1972) Convergence and Approximation of Semigroups of Nonlinear Operators in Banach Spaces, J. Funct. Ana., 9, 63–74.
  5. Debreu, G. (1967) Integration of correspondences. Proc. Fifth Berkeley Syrup. Math. Stat. Probab (Univ. California Press, Berkeley, CA), 2(1), 351–372.
  6. Komura, Y. (1969) Nonlinear semigroup in Hilbert space, J. Math. Soc. Japan, 21, 375–507.
  7. Lakshmikantham, V., Leela, S. (1981) Nonlinear Diffrential Equations in Abstract Spaces, Pergamon Press, New York.
  8. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
  9. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015) Extension of Hukuhara difference in intuitionistic fuzzy set theory, Notes on Intuitionistic Fuzzy Sets, 21(4), 34–47.
  10. Puri, M. L., & Ralescu, D. A. (1986) Fuzzy random variables, J. Math. Anal. Appl., 114, 409–422.
  11. Rådström, H. (1952) An Embedding Theorem for Spaces of Convex Sets, Proc. Amer. Math. Soc., 3, 165–169.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.