From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation
Jump to search
shortcut
|
http://ifigenia.org/wiki/issue:iwgn-2010-66-70
|
Title of paper:
|
Statistical estimations on MV-algebras
|
Author(s):
|
|
Presented at:
|
11th IWGN, Sofia, 5 December 2010
|
Published in:
|
Conference proceedings, pages 66—70
|
Download:
|
PDF (219 Kb, File info)
|
Abstract:
|
The aim of this paper is determining the point and interval estimation of the mean value of the observable from the set of all interval (∞, t) to the MV -algebra.
|
References:
|
- Bocato, A.,Riečan,B., Vrábelová, B. :Kurzveil-Henstock interval in Riesz spaces. Bethan 2009.
- Kelemenová, J., Kuková, M.: Central limit theorem on MV-algebras. IEEE London 2010 (to appear).
- Kelemenová, J., Kuková, M.: Strong law of large numbers on MV-algebras. IEEE London 2010 (to appear).
- Montagna, F.: An algebraic approach to propositional fuzzy logic. J.Logic Lang.Inf. 2000, 91-124.
- Riečan, B.: On a new approach to probability theory on MV-algebras(to appear).
- Riečan, B.: On the product MV-algebras. Tatra Mt. Math. Publ. 16, 1999, 143 - 149.
- Riečan, B., Lasová, L.: On the probability theory on the K^opka D-posets (to appear).
- Riečan, B., Mundici, D.: Probability on MV algebras, Handbook of Measue Theory, Elsevier, Amsterdam 2002, 869 - 909.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|