Eleventh Int. Workshop on GNs and Second Int. Workshop on GNs, IFSs, KE London, 9-10 July 2010, 66-70

Statistical Estimation on MV-algebras

Renáta Hanesová

Faculty of Natural Sciences, Matej Bel University
Department of Mathematics
Tajovského 40, 974 01 Banská Bystrica, Slovakia
e-mail: renata.hanesova@gmail.com

Abstract: The aim of this paper is determining the point and interval estimation of the mean value of the observable from the set of all interval $(-\infty, t)$ to the MV-algebra.

1 MV-algebras

By the Mundici theorem ([8]) MV-algebra can be characterized by the help of l-groups.

1.1 Definition. An l-group is and algebraic system

$$(G,+,\leq)$$

such that

(G, +) is and Abelian group (G, \leq) is a partially ordered set being a lattice $a \leq b \Longrightarrow a + c \leq b + c$ for any a, b, c in G.

1.2 Definition. An MV-algebra is an algebraic system

$$(M, \oplus, \odot, \leq, 0, u)$$

where

M = [0, u] is an interval in an l-group $G = (G, +, \leq)$ 0 is the neutral element of G (i.e. a + 0 = a for any $a \in G$) u is the strong unit of G (i.e. to any $a \in G$ there exists $n \in N$ such that $a \leq u + u + ... + u(n\text{-times})$) $a \oplus b = (a + b) \land 1$, $a \odot b = (a + b - 1) \lor 0$.

1.3 Definition. An state on an MV-algebra M is a mapping $m: M \to [0,1]$ satisfying the following conditions:

- (i) m(u) = 1, m(0) = 0;
- (ii) $a_n \nearrow a \Longrightarrow m(a_n) \nearrow m(a)$;
- (iii) $a_n \searrow a \Longrightarrow m(a_n) \searrow m(a)$.
- **1.4 Definition.** Let $\mathcal{J} = \{(-\infty, t); t \in R\}$. An observable on M is any mapping $x : \mathcal{J} \to M$ satisfying the conditions:
 - (i) $t_n \nearrow \infty \Longrightarrow x((-\infty, t_n)) \nearrow u$;
 - (ii) $t_n \searrow -\infty \Longrightarrow x((-\infty, t_n \searrow 0;$
- (iii) $t_n \nearrow t \Longrightarrow x((-\infty, t_n)) \nearrow x((-\infty, t_n)) \nearrow x((-\infty, t)).$
- **1.5** Theorem.[5] Let $m: M \to [0,1]$ be a state, $x: \mathcal{J} \to M$ be an observable. Define $F: R \to [0,1]$ by the formula

$$F(t) = m(x((-\infty, t))), t \in R$$

Then F has the following properties:

- (i) F is non-decreasing;
- (ii) $\lim_{t\to\infty} F(t) = 1$;
- (iii) $\lim_{t\to-\infty} F(t) = 0$;
- (iv) F is left continuous in any point $t \in R$.

Proof. is straightforward.

1.6 Definition. An observable $x: \mathcal{J} \to M$ is called to be integrable if there exists

$$E(x) = \int_{R} t dF(t),$$

where $F: R \to [0,1]$ is distribution function of the observable x. The observable x is square integrable, if there exists

$$\int_{R} t^{2} dF(t).$$

2 MV-algebras with Product

- **2.1** Definition. An MV-algebra with product is a pair(M, .), where M is an MV-algebra and . is a commutative and associative binary operation on M satisfying the following conditions:
 - (i) $u \cdot a = a$ for any $a \in M$
 - (ii) $a.((b-c) \lor 0) = (a.b a.c) \lor 0$ for any $a, b, c \in M$

2.2 Theorem. Let M be a σ -complete MV-algebra with product, $\mathcal{M} = \{\Delta_t^n; t \in R\}, x_1, ..., x_n : \mathcal{J} \longrightarrow M$ be observables, where $\Delta_t^n = \{(u_1, ..., u_n); \sum_{i=1}^n u_i < t\}$. Then there exists a mapping $h_n : \mathcal{M} \to M$ such that the mapping $z : \mathcal{J} \longrightarrow M$ defined by

$$z((-\infty, t)) = h_n(\Delta_t^n),$$

is an observable.

Proof. See [5], Theorem 2.3.

2.3 Definition. Let M be a σ -complete MV-algebra with product, $x_1, ..., x_n : \mathcal{J} \to M$ be observables. Then its sum is defined by the formula

$$\left(\sum_{i=1}^{n} x_i\right) (-\infty, t) = h_n \left(\Delta_t^n\right) = h_n \left(g_n^{-1} \left((-\infty, t)\right)\right)$$

$$\sum_{i=1}^{n} x_i = h_n \circ g_n^{-1}$$

where $g: \mathbb{R}^n \to \mathbb{R}, \ g(m_1, ..., m_n) = m_1 + ... + m_n$.

2.4 Definition. Observables $x_1, ..., x_n$ are independent, if for any $t_1, ..., t_n \in R$

$$m\left(h_n\left((-\infty,t_1)\times(-\infty,t_2)\times\ldots\times(-\infty,t_n)\right)\right) =$$

$$= m\left(x_1\left((-\infty,t_1)\right)\right)\cdot m\left(x_1\left((-\infty,t_2)\right)\right)\cdot\ldots\cdot m\left(x_1\left((-\infty,t_n)\right)\right).$$

2.5 Definition. An observable $x: \mathcal{J} \longrightarrow M$ is called strong, if

$$[a,b) \cap [c,d) = \emptyset \Longrightarrow (x([a,b)).\alpha) \wedge (x([c,d)).\beta) = 0$$

for any $\alpha, \beta \in M$.

2.6 Definition. A state $m: M \longrightarrow \langle 0, 1 \rangle$ is called σ -additive, if

$$m\left(\bigvee_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} m\left(A_n\right)$$

whenever $A_n \cap A_m = 0 \ (n \neq m)$.

3 Applications

3.1 Definition. Let M be a σ -complete MV-algebra with product, $x_1, ..., x_n$ be independent observables. Then we define

$$\left(\frac{1}{n}\sum_{i=1}^{n} x_i - a\right) ((-\infty, t)) = \left(\sum_{i=1}^{n} x_i\right) ((-\infty, (t+a)n)) =$$

$$= h_n \left(g_n^{-1} \left((-\infty, (t+a)n)\right)\right)$$

3.2 Theorem. Let M be a σ -complete MV-algebra with product, $m: M \to [0,1]$ be a σ -additive state, $(x_n)_n$ be a sequence of independent, equally distributed, square integrable strong observables. Let $E[x_1] = E[x_2] = ... = a$, $\sigma(x_1) = \sigma(x_2) = ... = \sigma$. Then for any $t \in R$

$$\lim_{n \to \infty} m \left(\frac{\frac{1}{n} \sum_{i=1}^{n} x_i - a}{\frac{\sigma}{\sqrt{n}}} \left(\left(-\infty, t \right) \right) \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{u^2}{2}} du.$$

Proof. See [2], Theorem 3.3.

We shall write $x \sim N(a, \sigma^2)$, if

$$m\left(x\left(-\infty,t\right)\right) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{u-a^2}{2\sigma^2}} du.$$

for any $t \in R$. If $a = 0, \sigma = 1$, then $m(x(-\infty, t))$ is denoted by $\Phi(t)$.

3.3 Theorem. Let M be a σ -complete MV-algebra with product, $m: M \to [0,1]$ be a σ -additive state, $(x_n)_n$ be a sequence of independent, equally distributed, square integrable strong observables. Let $E[x_1] = E[x_2] = ... = a$, $\sigma(x_1) = \sigma(x_2) = ... = \sigma$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$. Then for any $t \in R$

$$\lim_{n \to \infty} m \left(\frac{1}{n} \sum_{i=1}^{n} x_i - E(\bar{x}) \right) \left(-\infty, \frac{t\sigma}{\sqrt{n}} \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{u^2}{2}} du.$$

Proof.
$$E\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) = \frac{1}{n}\sum\underbrace{E\left(x_i\right)}_{i=1} = \frac{1}{n}\cdot n\cdot a = a,$$

hence we see that \bar{x} is the point estimation of the a.

3.4 Definition. Let $x: \mathcal{J} \to M$ be an observable, $E(x) = a, \sigma^2(x) = \sigma$. $(y_i)_{i=1}^{\infty}$ be a sequence of observable estimation. The sequence $(y_i)_{i=1}^{\infty}$ is an interval estimation of a, if there exist $\delta > 0$ such that

$$\lim_{n \to \infty} m \left(y_n - \delta < a < y_n + \delta \right) = 0.$$

The number $\alpha = 1 - m(y_n - \delta < a < y_n + \delta)$ is called significance level.

3.5 Theorem. Let all assumption of Theorem 3.3 be satisfied and $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$, $\alpha = 2(1 - \Phi(\delta))$, i.e.

$$\lim_{n \to \infty} m \left(\frac{\bar{x}_n - a}{\frac{\sigma}{\sqrt{n}}} (-\delta, \delta) \right) = 1 - \alpha.$$

Then $(\bar{x}_n)_n$ is an interval estimation of the mean value $a = E(x_i)$.

Proof. Evidently

$$\begin{array}{l} m\left(\bar{x}_{n}-\delta < a < \bar{x}_{n}+\delta\right) = m\left(\left(\bar{x}_{n}-a\right)\left(R\backslash\left(-\delta,\delta\right)\right)\right) = \\ = m\left(\left(\frac{\bar{x}_{n}-a}{\frac{\sigma}{\sqrt{n}}}\right)\left(R\backslash\left(-\frac{\delta\sigma}{\sqrt{n}},\frac{\delta\sigma}{\sqrt{n}}\right)\right)\right) = 1 - m\left(\left(\frac{\bar{x}_{n}-a}{\frac{\sigma}{\sqrt{n}}}\right)\left(\left(-\frac{\delta\sigma}{\sqrt{n}},\frac{\delta\sigma}{\sqrt{n}}\right)\right)\right) \end{array}$$

Since
$$(-\delta, \delta) = (-\infty, \delta) - (-\infty, -\delta)$$

and $\lim_{n \to \infty} m\left(\frac{\bar{x}_n - a}{\frac{\sigma}{\sqrt{n}}}(-\infty, \delta)\right) = \Phi\left(\delta\right)$
we obtain $\lim_{n \to \infty} m\left(\frac{\bar{x}_n - a}{\frac{\sigma}{\sqrt{n}}}(-\delta, \delta)\right) = \Phi\left(\delta\right) - \underbrace{\Phi\left(-\delta\right)}_{1 - \Phi(\delta)} = 2\Phi\left(\delta\right) - 1 = 1 - 2\left(1 - \Phi\left(\delta\right)\right) = 1 - \alpha$

References

- [1] Bocato, A.,Riečan,B., Vrábelová,B.:Kurzveil-Henstock interval in Riesz spaces. Bethan 2009.
- [2] Kelemenová, J., Kuková, M.: Central limit theorem on MV-algebras. IEEE London 2010 (to appear).
- [3] Kelemenová, J., Kuková, M.: Strong law of large numbers on MV-algebras. IEEE London 2010 (to appear).
- [4] Montagna, F.: An algebraic approach to propositional fuzzy logic. J.Logic Lang.Inf. 2000, 91-124.
- [5] Riečan, B.: On a new approach to probability theory on MV-algebras (to appear).
- [6] Riečan, B.: On the product MV-algebras. Tatra Mt. Math. Publ. 16, 1999, 143 149.
- [7] Riečan, B., Lašová, L.: On the probability theory on the Kôpka D-posets (to appear).
- [8] Riečan, B., Mundici, D.: Probability on MV algebras, Handbook of Measue Theory, Elsevier, Amsterdam 2002, 869 909.