Title of paper:
|
A general approach to modal topological structures illustrated by intuitionistic fuzzy objects
|
Author(s):
|
Poonam Kumar Sharma
|
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics \\ and Biomedical Engineerings, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 105, Sofia 1113, Bulgaria
|
krat@bas.bg
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 3, pages 260–284
|
DOI:
|
https://doi.org/10.7546/nifs.2024.30.3.260-284
|
Download:
|
PDF (251 Kb, File info)
|
Abstract:
|
A new, general approach to introducing of the concept of a Modal Topological Structure (MTS) is given. The basic properties of the MTS are studied. The MTSs are illustrated by intuitionistic fuzzy objects - intuitionistic fuzzy sets, operations, relations and operators. So, 38 different intuitionistic fuzzy MTSs are described.
|
Keywords:
|
Intuitionistic fuzzy set, Intuitionistic fuzzy modal topological structure.
|
AMS Classification:
|
03E72
|
References:
|
- Atanassov, K. (1999). Intuitionistic Fuzzy Sets. Springer, Heidelberg.
- Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
- Atanassov, K. (2022). Intuitionistic fuzzy modal topological structure. Mathematics, 10, Article 3313.
- Atanassov, K. (2022). On intuitionistic fuzzy modal topological structures with modal operator of second type. Notes on Intuitionistic Fuzzy Sets, 28(4), 457–463.
- Atanassov, K. (2022). On four intuitionistic fuzzy feeble topological structures. Proceedings of 11th IEEE International Conference on Intelligent Systems (IS), Warsaw, 12-14 Oct. 2022. DOI: 10.1109/IS57118.2022.10019726
- Atanassov, K. (2022). On the intuitionistic fuzzy modal feeble topological structures. Notes on Intuitionistic Fuzzy Sets, 28(3), 211–222.
- Atanassov, K. (2023). Four new intuitionistic fuzzy bimodal topological structures. Notes on Intuitionistic Fuzzy Sets, 29(3), 239–246.
- Atanassov, K. (2023). Intuitionistic fuzzy modal topological structures based on two new intuitionistic fuzzy modal operators. Journal of Multiple-Valued Logic & Soft Computing, 41, 227–240.
- Atanassov, K. (2023). On intuitionistic fuzzy extended modal topological structures. In: Atanassov, K., et al (Eds.). Uncertainty and Imprecision in Decision Making and Decision Support – New Advances, Challenges, and Perspectives, Springer, Cham, 2023, 3–14.
- Atanassov, K. (2023). On intuitionistic fuzzy temporal topological structures. Axioms, 12, Article 182.
- Atanassov, K. (2023). On two new intuitionistic fuzzy topological operators and four new intuitionistic fuzzy feeble modal topological structures. Notes on Intuitionistic Fuzzy Sets, 29(1), 74–83.
- Atanassov, K. (2024). Intuitionistic fuzzy modal multi-topological structures and intuitionistic fuzzy multi-modal multi-topological structures. Mathematics, 12, Article 361.
- Atanassov, K., Angelova, N., & Pencheva, T. (2023). On two intuitionistic fuzzy modal topological structures. Axioms, 12, Article 408.
- Ban, A. I. (1997). Convex intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 3(2), 66–76.
- Blackburn, P., van Bentham, J., & Wolter, F. (2006). Modal Logic. North Holland, Amsterdam.
- Bourbaki, N. (1960). Elements De Mathematique, Livre III: Topologie Generale (3rd Ed.). Chapitre 1: Structures Topologiques, Chapitre 2: Structures Uniformes. Herman, Paris (in French).
- Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems, 88(1), 81–89.
- Çoker, D. (1997). On topological structures using intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 3(5), 138–142.
- Çoker, D., & Demirci, M. (1995). An introduction to intuitionistic fuzzy points. Notes on Intuitionistic Fuzzy Sets, 1(2), 79–84.
- Çoker, D., Demirci, M. (1996). An introduction to intuitionistic topological spaces in Sostak’s sense. BUSEFAL, 67, 67–76.
- El-Latif, A., & Khalaf, M. (2015). Connectedness in intuitionistic fuzzy topological spaces in Sostak’s sense. Italian Journal of Pure and Applied Mathematics, 35, 649–668.
- Feys, R. (1965). Modal Logics, Gauthier, Paris.
- Fitting, M., & Mendelsohn, R. (1998). First Order Modal Logic. Kluwer, Dordrecht.
- Haydar Es¸, A., & Çoker, D. (1996). More on fuzzy compactness in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets, 2(1), 4–10.
- Kim, Y. C., & Abbas, S. E. (2005). Connectedness in intuitionistic fuzzy topological spaces. Communications of the Korean Mathematical Society, 20(1), 117–134.
- Kuratowski, K. (1966). Topology, Vol. 1, New York, Academic Press.
- Kutlu, F. (2017). On separation axioms in temporal intuitionistic fuzzy Sostak topology. Notes on Intuitionistic Fuzzy Sets, 23(1), 21–30.
- Kutlu, F., Atan, O., & Bilgin, T. (2016). Distance measure, similarity measure. Entropy and inclusion measure for temporal intuitionistic fuzzy sets. In: Proceedings of IFSCOM’2016, Mersin, Turkey, 130–148.
- Kutlu, F., & Bilgin, T. (2015). Temporal intuitionistic fuzzy topology in Sostak’s sense. Notes on Intuitionistic Fuzzy Sets, 21(2), 63–70.
- Kutlu, F., Ramadan, A., & Bilgin, T. (2016). On compactness in temporal intuitionistic fuzzy sostak topology. Notes on Intuitionistic Fuzzy Sets, 22(5), 46–62.
- Lee, S. J., & Lee, E. P. (2000). The category of intuitionistic fuzzy topological spaces. Bulletin of Korean Mathematical Society, 37(1), 63–76.
- Lupianez, F. G. (2004). Separation in intuitionistic fuzzy topological spaces. International Journal of Pure and Applied Mathematics, 17(1), 29–34.
- Lupianez, F. G. (2006). On intuitionistic fuzzy topological spaces. Kybernetes, 35(5–6), 743–747.
- Milles, S. (2020). The lattice of intuitionistic fuzzy topologies generated by intuitionistic fuzzy relations. Applications and Applied Mathematics, 15(2), 942–956.
- Mints, G. (1992). A Short Introduction to Modal Logic. University of Chicago Press, Chicago.
- Mondal, K., & Samanta, S. K. (2003). A study on intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets, 9(1), 1–32.
- Munkres, J. (2000). Topology. Prentice Hall Inc., New Jersey.
- Ozbakir, O., & Çoker, D. (1999). Fuzzy multifunctions in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets, 5(3), 1–5.
- Park, J. H. (2004). Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals, 22(5), 1039–1046.
- Rajarajeswari, P., & Krishna Moorthy, R. (2012). Intuitionistic fuzzy completely weakly generalized continuous mappings. Notes on Intuitionistic Fuzzy Sets, 18(1), 25–36.
- Roopkumar, R., & Kalaivani, C. (2010). Continuity of intuitionistic fuzzy proper functions on intuitionistic smooth fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets, 16(3), 1–21.
- Saadati, R., Park, J. H. (2006). On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals, 27(2), 331–334.
- Samanta, S. K., & Mondal, T. K. (1997). Intuitionistic gradation of openness: Intuitionistic fuzzy topology. BUSEFAL, 73, 8–17.
- Thakur, S., & Chaturvedi, R. (2006). Generalized continuity in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets, 12(1), 38–44.
- Tiwari, S. (2010). On relationships among intuitionistic fuzzy approximation operators, intuitionistic fuzzy topology and intuitionistic fuzzy automata. Notes on Intuitionistic Fuzzy Sets, 16(1), 1–9.
- Yılmaz, S., & Cuvalcıoglu, G. (2014). On level operators for temporal intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 20(2), 6–15.
- Yongfa, H., & Changjun, J. (2004). Some properties of intuitionistic fuzzy metric spaces. Notes on Intuitionistic Fuzzy Sets, 10(1), 18–26.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|