As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy Dirichlet problem

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 13:59, 15 December 2018 by Vassia Atanassova (talk | contribs)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/24/4/72-84
Title of paper: Optimization of EOQ model with space constraint: An intuitionistic fuzzy geometric programming approach
Author(s):
S. Melliani
Department of Mathematics, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
saidmelliani@gmail.com
I. Bakhadach
Department of Mathematics, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
M. Elomari
Department of Mathematics, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
L. S. Chadli
Department of Mathematics, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 24 (2018), Number 4, pages 72–84
DOI: https://doi.org/10.7546/nifs.2018.24.4.72-84
Download:  PDF (195 Kb  Kb, File info)
Abstract: In the present paper, a new definition of intuitionistic fuzzy derivative is presented, which a generalization of fuzzy fractional derivative and is compatible with the “crisp” definition of fractional derivative. We prove some properties concerning this definition. Finally, the existence of Dirichlet problem is proven.
Keywords: Hukuhara difference, Generalized intuitionistic fuzzy derivative, Intuitionistic fuzzy Caputo fractional derivative, Intuitionistic fuzzy Dirichlet problem.
AMS Classification: 03E72, 34Gxx.
References:
  1. Agarwal, R. P., Lakshmikantham, V., Nieto, J. J. (2010). On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72(6), 2859–2862.
  2. Allahviranloo, T., Armand, A., & Gouyandeh, Z. (2014). Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intelligent and Fuzzy Systems, 26, 1481– 1490.
  3. Arara, A., Benchohra, M., Hamidi, N., & Nieto, J. J. (2010). Fractional order differential equations on an unbounded domain, Nonlinear Anal., 72(2), 580–586.
  4. Atanassov, K. (1983). Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  5. Atanassov, K. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
  6. Bede, B., & Stefanini, L. (2013). Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230, 119–141.
  7. De Luca, A., & Termini, S. (1972). A definition of non Probabilistic entropy in the setting of fuzzy theory, Information and Control, 20(4), 301–312.
  8. Elomari, M., Melliani, S., & Chadli, L. S. (2017). Solution of intuitionistic fuzzy fractional differential equations. Annals of Fuzzy Mathematics and Informatics, 13(3), 379–391.
  9. Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations, Amesterdam: Elsevier Science.
  10. Melliani, S., Elomari, M., Chadli, L. S. & Ettoussi, R. (2015). Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
  11. Melliani, S., Elomari, M., Chadli, L. S. & Ettoussi, R. (2015). Extension of Hukuhara difference in intuitionistic fuzzy set theory, Notes on Intuitionistic Fuzzy Sets, 21 (4), 34–47.
  12. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego.
  13. Stefanini, L., & B. Bede, (2009). Generalized hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis: Theory, Methods and Applications 71(34), 1311–1328.
  14. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.