Title of paper:
|
On interval-valued intuitionistic fuzzy modal operators
|
Author(s):
|
Krassimir Atanassov
|
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
|
krat@bas.bg
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 24 (2018), Number 1, pages 1–12
|
Download:
|
PDF (174 Kb Kb, File info)
|
Abstract:
|
An survey of the existing interval-valued intuitionistic fuzzy modal operators is given. Eight new operators are introduced that extend the older ones. Some of their basic properties are discussed. Open problems are formulated.
|
Keywords:
|
Interval-valued intuitionistic fuzzy set, Interval-valued intuitionistic fuzzy operator.
|
AMS Classification:
|
03E72
|
References:
|
- Angelova, N., & Stoenchev, M. (2016) Intuitionistic fuzzy conjunctions and disjunctions from first type. Annual of Informatics Section, Union of Scientists in Bulgaria, 8, 2015- 2016, 1–17.
- Angelova, N., & Stoenchev, M. (2017) Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
- Atanassov K. T. (1988) Review and New Results on Intuitionistic Fuzzy Sets, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS-1-88. Reprinted: Int. J. Bioautomation, 2016, 20(S1), S7–S16.
- Atanassov K. (1994) Operators over interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 64(2), 159–174.
- Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
- Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
- Atanassov, K. (2017) Intuitionistic Fuzzy Logics. Springer, Cham.
- Atanassov, K. (2017) New intuitionistic fuzzy extended modal operators. Notes on Intuitionistic Fuzzy Sets, 23(4), 40–45.
- Atanassov, K. (2018) Two intuitionistic fuzzy modallevel operators. In:- Advances in Fuzzy Logic and technology 2017, Springer, Cham, Vol. 1, 85–98.
- Atanassov, K., & Gargov, G. (1989) Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343–349.
- Kaufmann, A. (1977) Introduction a la Theorie des Sour-Ensembles Flous, Paris, Masson.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|