Title of paper:
|
On generalized double statistical convergence of order α in intuitionistic fuzzy n-normed spaces
|
Author(s):
|
Ekrem Savaş
|
Department of Mathematics, Istanbul Commerce University, Sutluce-Istanbul, Turkey
|
ekremsavas@yahoo.com
|
|
Presented at:
|
3rd International Conference on Intuitionistic Fuzzy Sets, 9 Aug – 1 Sep 2016, Mersin, Turkey
|
Published in:
|
"Notes on IFS", Volume 22, 2016, Number 4, pages 13—24
|
Download:
|
PDF (260 Kb Kb, File info)
|
Abstract:
|
In the present paper, we introduce the notion [V, λ]2(I)-summability and ideal λ-double statistical convergence of order α with respect to the intuitionistic fuzzy n-normed (μ,ν). In addition, we present a series of inclusion theorems associated with these new definitions.
|
Keywords:
|
Ideal, Filter, I-double statistical convergence, Iλ-double statistical convergence order α, [V, λ]2(I)-summability, closed subspace.
|
AMS Classification:
|
40G99
|
References:
|
260
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Cakalli, H. (2009) A study on statistical convergence, Funct. Anal. Approx. Comput., 1(2), 19–24, MR2662887.
- Colak, R. (2010) Statistical convergence of order α, Modern methods in Analysis and its Applications, New Delhi, India, Anamaya Pub., 121–129.
- Colak, R., & Bektas, C. A. (2011) λ-statistical convergence of order α, Acta Math. Scientia, 31B(3), 953–959.
- Das, P., Savaş, E., & Ghosal, S. Kr. (2011) On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24, 1509–1514.
- El Naschie, M. S. (1998) On certainty of Cantorian geometry and two-slit experiment, Chaos, Solitons & Fractals, 9, 517–529.
- Fast, H. (1951) Sur la convergence statistique, Colloq. Math., 2, 241–244.
- Fridy, J. A. (1985) On statistical convergence, Analysis, 5, 301–313.
- Gähler, S. (1965) Lineare 2-normietre räume, Math. Nachr., 28, 1–43.
- Gähler, S. (1969) Untersuchungen uber verallgemeinerte m-metrische r¨aume, I, II, III, Math. Nachr., 40, 165–189.
- Gunawan, H., & Mashadi, M. (2001) On n-normed spaces, Int. J. Math. Math. Sci., 27, 631–639.
- Karakus, S., Demirci, K. & Duman, O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35, 763–769.
- Kim, S.S., & Cho, Y.J. (1996) Strict convexity in linear n-normed spaces, Demonst. Math., 29, 739–744.
- Malceski, R. (1997) Strong n-convex n-normed spaces, Mat. Bilt., 21, 81–102.
- Kostyrko, P., Šalát, T., & Wilczynki, W. (2000–2001) I-convergence, Real Anal. Exchange, 26(2), 669–685.
- Kumar, V., & Mursaleen, M. (2011) On (λ, μ)-Statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2), 109–120.
- Maio, G. D., & Kocinac, L. D. R. (2008) Statistical convergence in topology, Topology Appl., 156, 28–45.
- Misiak, A. (1989) n-inner product spaces, Math. Nachr., 140, 299–319.
- Mursaleen, M. (2000) λ-statistical convergence, Math. Slovaca, 50, 111–115.
- Mursaleen, M., & Edely, O. H. H. (2003) Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), 223–231.
- Mursaleen, M., Mohiuddine, S. A., & Edely, O. H. H. (2009) On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59(2010), 603–611.
- Mursaleen, M., & Mohiuddine, S. A. (2009) Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 41, 2414–2421.
- Mohiuddine, S. A., & Danish Lohani, Q. M. (2009) On generalized statistical convergence in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 42, 1731–1737.
- Park, J. H. (2004) Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22, 1039–1046.
- Saadati, R., & Park, J. H. (2006) On the intuitioistic fuzzy topologicial spaces, Chaos Solitons Fractals, 27, 331–344.
- Šalát, T. (1980) On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139–150.
- Savaş, E. (2011) Pratulananda Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24, 826–830.
- Savaş, E. (2010) Δ m-strongly summable sequences spaces in 2-Normed Spaces defined by Ideal Convergence and an Orlicz Function, App. Math. Comp., 217, 271–276.
- Savaş, E., Das, P., & Sudipta, D. (2012) A note on strong matrix summability via ideals, Appl. Math. Lett., 25(4), 733–738.
- Savaş, E. (2013) Some I-convergent sequence spaces of fuzzy numbers defined by infinite matrix. Math. Comput. Appl., 18, 84–93.
- Savaş, E. (2012) On generalized double statistical convergence via ideals, Proc. of the Fifth Saudi Science Conference, 16-18 April, 2012.
- Savaş, E. (2012) On strong double matrix summability via ideals, Filomat, 26(6), 1143–1150.
- Savaş, E. (2009)λ-double sequence spaces of fuzzy real numbers defined by Orlicz function, Math. Comm., 14(2), 287–297.
- Savaş, E. (2000) On strongly λ-summable sequences of fuzzy numbers. Inform. Sci., 125 (1–4), 181–186.
- Savaş, E., & Mursaleen, M. (2004) On statistically convergent double sequence of fuzzy numbers, Information Sciences, 162, 183–192.
- Sen, M., & Debnath, P. (2011) Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Math. Comput. Modelling, 54, 2978–2985.
- Schoenberg, I. J. (1959) The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361–375.
- Schweizer, B., & Sklar, A. (1960) Statistical metric spaces, Pacific J. Math., 10, 313–334.
- Thillaigovindan, N., Shanthi, S. A., & Jun, Y. B. (2011) On lacunary statistical convergence in intuitionistic fuzzy n-normed linear space, Annals of Fuzzy Math. and Inf., 1(2), 119–131.
- Vijayabalaji, S., Narayanan, A. (2005) Fuzzy n-normed linear space, J. Math. Math. Sci., 24, 3963–3977.
- Zadeh, L. A. (1965) Fuzzy sets, Inform. Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|