Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.
Deadline for submissions: 16 November 2024.
Issue:On IF-semistates: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
# Atanassov, K. T. (2012) On Intuitionistic Fuzzy Sets. Springer, Berlin. | # Atanassov, K. T. (2012) On Intuitionistic Fuzzy Sets. Springer, Berlin. | ||
# Cignoli L., D’Ottaviano M., & Mundici, D. (2000) Algebraic Foundations on Many-valed Reasoning, Kluwer, Dordrecht. | # Cignoli L., D’Ottaviano M., & Mundici, D. (2000) Algebraic Foundations on Many-valed Reasoning, Kluwer, Dordrecht. | ||
# Ciungu, L. & | # Ciungu, L. & Riečan, B. (2009) General form of probabilities on IF-sets. Fuzzy Logic and Applications. Proc. WILF Palermo, 101–107. | ||
# Ciungu L. & | # Ciungu L. & Riečan, B. (2010) Representation theorem for probabilities on IFS-events. Information Sciences, 180, 703–708. | ||
# Grzegorzewski, P. & Mrowka, E. (2002) Probabilitty on intuitionistic fuzzy events. In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski, et al. eds.), 105–115. | # Grzegorzewski, P. & Mrowka, E. (2002) Probabilitty on intuitionistic fuzzy events. In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski, et al. eds.), 105–115. | ||
# Montagna, F. (2000) An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf. (D. Mundici et al. eds.), Special Issue on Logics of Uncertainty, 9, 91–124. | # Montagna, F. (2000) An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf. (D. Mundici et al. eds.), Special Issue on Logics of Uncertainty, 9, 91–124. |
Revision as of 11:16, 17 January 2017
shortcut
|
|