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Abstract: Semistates on a family F of IF-events are considered as functions m : F → [0, 1],
additive with respect to the Lukasiewicz disjunction A ⊕ B and conjunction A � B. The main
result is an extension theorem extending m to an MV algebra m̄ : M → [0, 1]. The theorem
generalizes the extension theorem of IF states from F toM.
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1 Introduction

There are many results about probability on IF-sets. Of course, similarly as in quantum structures,
another terminology is used. Instead of probability usualy the term state is used. Moreover,
P. Grzegorzewski [6] introduced the term probability for mappings assigning to IF-sets some
compact intervals in the setR of real numbers. On the other hand, the state is a mapping assigning
to IF-sets real numbers. Of course, the Grzegorzewski concept of probability is in a one-to-one
correspondence with the concept of the state.

The notion of a state has been defined axiomatically as an additive, continuous function with
values in the unit interval, with value 0 in the least element and value 1 in the greatest element
(see [4, 5, 9, 11, 12]).

One of the most important result of the theory is the theorem on embedding of the family
of all IF-sets to a convenient MV-algebra together with the extension of a given state to a state
on MV-algebra (see [10, 12]). In [13] a variant of the extension theorem was considered without
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continuity of given states – we had spoken about finitely additive states. In the paper we present
some similar results. Of course, our assumptions are weaker, therefore instead of the term finitely
additive state we use the term semistate.

In Section 2 we present some basic informations about IF-sets, in Section 3 about MV-
algebras, in Section 4 the notion of semistate is studied, and Section 5 contains the embedding
theorem.

2 IF-sets

An intuitionistic fuzzy set (see [1, 2, 12]) is a pair A = (µA, νA) of functions µA, νA : Ω→ [0, 1]

such that
µA + νA ≤ 1.

If A = (µA, νA), B = (µB = νB), then we write

A ≤ B

if and only if
µA ≤ µB, νA ≥ νB.

Here (0Ω, 1Ω) ≤ (µA, νA) ≤ (1Ω, 0Ω) for all A = (µA, νA). We shall write

An = (µAn , νAn)↗ (µA, νA) = A,

if and only if
µAn ↗ µA, νAn ↘ νA.

Denote by ∆ the set

∆ = {(a, b) ∈ [0, 1]2; a+ b ≤ 1}.

Then an IF set is a mapping A : Ω → ∆. If we put νA = 1 − µA, then we obtain a fuzzy set
A : Ω→ [0, 1]. If A : Ω→ {0, 1}, then we obtain a susbset A0 ⊂ Ω, where ω ∈ A0 if and only if
A(ω) = 1, hence A can be identified with the indicator χA0 .

In the paper, we work with a family F of mappings A = (µA, νA) : Ω → ∆ closed with
respect to the Łukasiewicz binary operations

A�B = ((µA + µB − 1) ∨ 0, (νA + νB) ∧ 1),

A⊕B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0).

and with respect to the unary operation

¬A = (1− µA, 1 = νA).
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3 MV-algebras

A prototype of an MV-algebra is the unit interval [0, 1] with two binary operations

a⊕ b = (a+ b) ∧ 1,

a� b = (a+ b− 1) ∨ 0,

and one unary operation
¬a = 1− a,

and the usual ordering. The operation⊕ correponds to the disjunction of statements (the union of
sets), � corresponds to the conjunction of statements (the product of sets), ≤ to the implication
of statements ( the inclusion of sets), ¬a to the negation of a statement ( the complement of a set).

Generally we shall use the Mundici characterization of MV-algebras (see [3, 7, 8, 14, 15]). It
starts with the notion of an l-group. An l-group is an algebraic sructure (G,+,≤), where (G,+)

is a commutative group, (G,≤) is a lattice, and the implication a ≤ b =⇒ a + c ≤ b + c holds.
An MV-algebra is an algebraic structure

(M, 0, u,≤,⊕,�),

where 0 is the neutral element in G, u is a positive element, M = {x ∈ G; 0 ≤ x ≤ u},
¬ : M →M is a unary operation given by the equality

¬x = u− x,

and ⊕,� are two binary operations given by

a⊕ b = (a+ b) ∧ u,

a� b = (a+ b− u) ∨ 0.

Example 3.1. Consider (R2,+,≤), where (x1, y1)+(x2, y2) = (x1 +x2, 1− (1−y1 +1−y2)) =

(x1, y1), y1 + y2 − 1), and (x1, y1) ≤ (x2, y2)⇐⇒ x1 ≤ x2, y1 ≥ y2. Then R2 is an l-group. Put
u = (1, 0). Then

M = {(x, y) ∈ R2; (0, 1) ≤ (x, y) ≤ u = (1, 0)}

is an MV-algebra.

Theorem 3.1. Let F be a family of IF-sets closed with respect to ⊕,�, and ¬. Let M be the
family of all A = (µA, νA) : Ω→ [0, 1]2 such that

(µA, 0) = (µA, νA)⊕ (0, 1− νA).

ThenM is an MV-algebra generated by F .
Proof: Put

G = (R2,+,≤)
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where
(a, b) + (c, d) = (a+ c, b+ d− 1),

(a, b) ≤ (c, d)⇐⇒ a ≤ c, b ≥ d.

Then G is an l-group. Put u = (1, 0). We have

M = {A; (0, 1) ≤ (µA, νA) ≤ (1, 0)},

and
(µA, νA)⊕ (0, 1− νA) = ((µA, νA) + (0, 1− νA)) ∧ (1, 0) =

= (µA, 0) ∧ (1, 0) = (µA, 0).

This completes the proof. �

4 IF-semistates

We shall consider a couple (Ω,S), where Ω is a non-empty set, and S is a σ-algebra of subsets of
Ω, i.e.,

(i)Ω ∈ S,
(ii)An ∈ S(n = 1, 2, ...) =⇒

⋃∞
n=1An ∈ S,

(iii)A ∈ S =⇒ Ω− A ∈ S.

Definition 4.1. By an IF-event we shall consider any IF-set A = (µA, νA) such that µA, νA : Ω→
[0, 1] are S-measurable, i.e.,

I ⊂ R, I is an interval =⇒ µ−1
A (I) ∈ S, ν−1

A (I) ∈ S.

By F the family of all IF-events will be denoted.

Definition 4.2. A mapping m : F → [0, 1] is called IF-semistate, if

A,B ∈ F , A�B = (0Ω, 1Ω) =⇒ m(A⊕B) = m(A) +m(B).

Definition 4.3. By P it will be denoted the family of all mappings m : F → [0, 1] satisfying the
folloging condition: There exist probability measures P,Q : S → [0, 1] and α ∈ R such that

(?)m(A) =

∫
µAdP + α(1−

∫
(µA + νA)dQ)

for any A = (µA, νA) ∈ F .

Proposition 4.1. Any m ∈ P is an IF-semistate.
Proof: Let A,B ∈ F , A = (µA, νA), B = (νB, νB), A�B = (0Ω, 1Ω). Then

(µA + µB − 1) ∨ 0 = 0, (νA + νB) ∧ 1 = 1,
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hence
µA + µB ≤ 1, νA + νA ≥ 1.

Therefore,
A⊕B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0) =

= (µA + µB, νA + νB − 1).

Since m ∈ P , we have

m(A⊕B) =

∫
(µA + µB)dP + α(1−

∫
(µA + µB + νA + νB − 1)dQ =

=

∫
(µA + µB)dP + α(2−

∫
(µA + νA + µB + νB)dQ) =

=

∫
µAdP + α(1−

∫
(µA + νA)dQ) +

∫
µBdP + α(1−

∫
(µB + νB)dQ) =

= m(A) +m(B).

This completes the proof. �

Proposition 4.2. Let P = Q. Then the mapping m : F → [0, 1] is a state, i.e., the following
properties are satisfied:

(i) m((0Ω, 1Ω)) = 0,m((1Ω, 0Ω)) = 1,

(ii) A�B = (0Ω, 1Ω) =⇒ m(A⊕B=m(A) +m(B),

(iii) An ↗ A =⇒ m(An)↗ m(A).

Proof: The property (ii) follows by the definition of IF-semistate, (i) is an easy consequence of
(?):

m((0Ω, 1Ω)) =

∫
0dP + α(1−

∫
(0 + 1)dQ) = α(1−Q(Ω)) = 0,

m((1Ω, 0Ω)) =

∫
1dP + α(1−

∫
(1 + 0)dQ) = P (Ω) + α.0 = 1.

Since P = Q, we obtain

m(A) =

∫
µAdP + α− α

∫
µAdP − α

∫
νAdP =

= (1− α)

∫
µAdP + α(1−

∫
νAdP ).

Let An ↗ A i.e., µAn ↗ µA, νAn ↘ νA. Since 1− α ≥ 0, α ≥ 0, we obtain by the monotone
convergence theorem

lim
n→∞

m(An) = (1− α) lim
n→∞

∫
µAndP + α(1− lim

n→∞

∫
νAndP ) =
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= (1− α)

∫
µAdP + α(1−

∫
νAdP ) = m(A).

This completes the proof. �

Remark 4.1. If µAn → µA, νAn → νA, then by (?) and the Lebesgue convergence theorem
m(An)→ m(A), of course, we are not able to prove that the convergence is monotone.

Remark 4.2. By the Ciungu representation theorem (see [4]), any state m : F → [0, 1] belongs
to the family P .

5 Extension

Now we are able to formulate and prove the main result of the article.

Theorem 5.1. Let F be the family of all IF-events on (Ω,S),M be the MV-algebra generated by
F . Then to any m ∈ P there exists an IF-semistate m̄ :M→ [0, 1] extending m.
Proof: Similarly as in [12], we define

m̄((µA, νA)) = m((µA, 0Ω))−m((0Ω, 1Ω − νA)).

If A = (µA, νA) ∈ F , then

m̄((µA, νA)) =

∫
µAdP + α(1−

∫
(µA + 0)dQ)− (

∫
0dP − α(1−

∫
(0 + 1− νA)dQ) =

=

∫
µAdP + α(1−

∫
(µA + νA)dQ) = m((µA, νA)).

Let A,B ∈ F , A�B = (0Ω, 1Ω), i.e.,

((µA + νA − 1) ∨ 0, (νA + νB) ∧ 1 = (0Ω, 1Ω),

hence
µA + µB ≤ 1, νA + νB ≥ 1.

Therefore,
A⊕B = (µA + µB, νA + νB − 1).

We have
m̄(A) =

∫
µAdP + α(1−

∫
(µA + νA)dQ),

m̄(B) =

∫
µBdP + α(1−

∫
(µB + νB)dQ),

m̄(A⊕B) =

∫
(µA + µB)dP + α(1−

∫
(µA + µB + νA + νB − 1)dQ),

=

∫
µAdP +

∫
µBdP + α(2−

∫
(µA + νA)dQ−

∫
(µB + νB)dQ) =
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=

∫
µAdP + α(1−

∫
(µA + νA)dQ) +

∫
µBdP + α(1−

∫
(µB + νB)dQ) =

= m̄(A) + m̄(B).

This completes the proof. �

Corollary 5.1. Let m be a state on F . Then, there exists a state m̄ onM extending m.
Proof: By the Ciungu representation theorem [4] we know that m ∈ P , hence Theorem 5.1 is
applicable. The only problem moreover is the monotonicity of m̄. Let A,B ∈ M, A ≤ B, i.e.,
µA ≤ µB, νA ≥ νB. Consider C ∈ S. We see that

α = m((0Ω, 0Ω)) ≤ m((χC , 0Ω)) =

∫
χCdP + α(1−

∫
(χC + 0)dQ),

hence
α ≤ P (C) + α− αQ(C),

0 ≤ P (C)− αQ(C)

for any C ∈ S. Therefore

0 ≤
∫
fdP − α

∫
fdQ

for any non-negative f . Since µB ≥ µA, we can put f = µB − µA. We obtain

m̄(B)− m̄(A) =

=

∫
(µB − µA)dP − α

∫
(µB − µA)dQ+ α

∫
(νA − νB)dQ ≥

≥
∫
fdP − α

∫
fdQ ≥ 0.

This completes the proof. �
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[4] Ciungu, L. & Riečan, B. (2009) General form of probabilities on IF-sets. Fuzzy Logic and
Applications. Proc. WILF Palermo, 101–107.

[5] Ciungu L. & Riečan, B. (2010) Representation theorem for probabilities on IFS-events.
Information Sciences, 180, 703–708.

33



[6] Grzegorzewski, P. & Mrówka, E. (2002) Probabilitty on intuitionistic fuzzy events. In: Soft
Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski, et al. eds.), 105–
115.

[7] Montagna, F. (2000) An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf.
(D. Mundici et al. eds.), Special Issue on Logics of Uncertainty, 9, 91–124.

[8] Mundici, D. (1986) Interpretation of AFC? algebras in Łukasiewicz sentential calculus. J.
Funct. Anal., 56, 889– 894.
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